Modelling of the strength-porosity relationship in glass-ceramic foam scaffolds for bone repair

[1]  N. Pugno,et al.  Study on the elastic-plastic behavior of a porous hierarchical bioscaffold used for bone regeneration , 2013 .

[2]  Sergey V. Dorozhkin,et al.  Calcium Orthophosphate-Based Bioceramics , 2013, Materials.

[3]  S. Dorozhkin,et al.  A detailed history of calcium orthophosphates from 1770s till 1950. , 2013, Materials science & engineering. C, Materials for biological applications.

[4]  Francesco Baino,et al.  Al-MCM-41 inside a glass–ceramic scaffold: A meso–macroporous system for acid catalysis , 2013 .

[5]  Francesco Brun,et al.  Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography , 2013 .

[6]  G. Hilmas,et al.  Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair. , 2013, Acta biomaterialia.

[7]  Larry L. Hench,et al.  An Introduction to Bioceramics , 2013 .

[8]  N. Pugno,et al.  Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications. , 2013, Materials science & engineering. C, Materials for biological applications.

[9]  Shiping Huang,et al.  Mechanical properties of a porous bioscaffold with hierarchy , 2013 .

[10]  Francesco Baino,et al.  Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution , 2013, Journal of biomaterials applications.

[11]  Robert Liska,et al.  Processing of 45S5 Bioglass® by lithography-based additive manufacturing , 2012 .

[12]  Francesco Baino,et al.  Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements , 2012, Journal of Materials Science: Materials in Medicine.

[13]  J. Lousteau,et al.  Phosphate glass fibres and their role in neuronal polarization and axonal growth direction. , 2012, Acta biomaterialia.

[14]  María Vallet-Regí,et al.  Bioceramics: From Bone Regeneration to Cancer Nanomedicine , 2011, Advanced materials.

[15]  Francesco Baino,et al.  Biomaterials and implants for orbital floor repair. , 2011, Acta biomaterialia.

[16]  A. Sola,et al.  Macroporous Bioglass®-derived scaffolds for bone tissue regeneration , 2011 .

[17]  Francesco Baino,et al.  Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. , 2011, Journal of biomedical materials research. Part A.

[18]  Delbert E Day,et al.  Bioactive glass in tissue engineering. , 2011, Acta biomaterialia.

[19]  Ziya Esen,et al.  Characterization of Ti–6Al–4V alloy foams synthesized by space holder technique , 2011 .

[20]  Christian Bergmann,et al.  3D printing of bone substitute implants using calcium phosphate and bioactive glasses , 2010 .

[21]  Aldo R. Boccaccini,et al.  Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering , 2010, Materials.

[22]  B. Bal,et al.  Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. , 2010, Journal of biomedical materials research. Part A.

[23]  F. Baino,et al.  Feasibility and Tailoring of Bioactive Glass-ceramic Scaffolds with Gradient of Porosity for Bone Grafting , 2010, Journal of biomaterials applications.

[24]  Enrica Verne,et al.  3-D high-strength glass–ceramic scaffolds containing fluoroapatite for load-bearing bone portions replacement , 2009 .

[25]  F. Baino,et al.  Feasibility, tailoring and properties of polyurethane/bioactive glass composite scaffolds for tissue engineering , 2009, Journal of materials science. Materials in medicine.

[26]  Francesco Baino,et al.  Foam-like scaffolds for bone tissue engineering based on a novel couple of silicate-phosphate specular glasses: synthesis and properties , 2009, Journal of materials science. Materials in medicine.

[27]  Chiara Renghini,et al.  Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration. , 2009, Acta biomaterialia.

[28]  J. Chevalier,et al.  Ceramics for medical applications: A picture for the next 20 years , 2009 .

[29]  Stefan Scheiner,et al.  Micromechanics of bone tissue-engineering scaffolds, based on resolution error-cleared computer tomography. , 2009, Biomaterials.

[30]  Francesco Baino,et al.  Glass–ceramic scaffolds containing silica mesophases for bone grafting and drug delivery , 2009, Journal of materials science. Materials in medicine.

[31]  Francesco Baino,et al.  High strength bioactive glass-ceramic scaffolds for bone regeneration , 2009, Journal of materials science. Materials in medicine.

[32]  C. Hellmich,et al.  Ultrasonic Characterisation of Porous Biomaterials Across Different Frequencies , 2009 .

[33]  J. A. Sanz-Herrera,et al.  A mathematical model for bone tissue regeneration inside a specific type of scaffold , 2008, Biomechanics and modeling in mechanobiology.

[34]  N. Pugno The role of defects in the design of space elevator cable: From nanotube to megatube , 2007 .

[35]  G. Muzio,et al.  Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. , 2007, Acta biomaterialia.

[36]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[37]  Josep A Planell,et al.  Micro-finite element models of bone tissue-engineering scaffolds. , 2006, Biomaterials.

[38]  A. Boccaccini,et al.  Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[39]  Aldo R Boccaccini,et al.  45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. , 2006, Biomaterials.

[40]  D. Kaplan,et al.  Porosity of 3D biomaterial scaffolds and osteogenesis. , 2005, Biomaterials.

[41]  R Shah,et al.  Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct. , 2005, Biomaterials.

[42]  N. Pugno Dynamic quantized fracture mechanics , 2005, cond-mat/0504501.

[43]  Nicola Pugno,et al.  Quantized fracture mechanics , 2004 .

[44]  J. M. Garcı́a,et al.  Modelling bone tissue fracture and healing: a review ☆ , 2004 .

[45]  L. Francis,et al.  Processing and properties of porous poly(L-lactide)/bioactive glass composites. , 2004, Biomaterials.

[46]  Julian R. Jones,et al.  Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. , 2004, Biomaterials.

[47]  C. Vitale-Brovarone,et al.  Macroporous glass-ceramic materials with bioactive properties , 2004, Journal of materials science. Materials in medicine.

[48]  T. Sadowski,et al.  Modeling of Porous Ceramics Response to Compressive Loading , 2003 .

[49]  G. Niebur,et al.  Biomechanics of trabecular bone. , 2001, Annual review of biomedical engineering.

[50]  A. Boccaccini,et al.  Prediction of the Poisson's ratio of porous materials , 1996, Journal of Materials Science.

[51]  H. Skinner,et al.  Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. , 1994, Journal of biomedical materials research.

[52]  T. Keller Predicting the compressive mechanical behavior of bone. , 1994, Journal of biomechanics.

[53]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[54]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[55]  Kevin Kendall,et al.  The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[56]  G. Irwin Crack-Extension Force for a Part-Through Crack in a Plate , 1962 .

[57]  R. Sack Extension of Griffith's theory of rupture to three dimensions , 1946 .

[58]  Q. Fu,et al.  Bone regeneration in strong porous bioactive glass (13-93) scaffolds with an oriented microstructure implanted in rat calvarial defects. , 2013, Acta biomaterialia.

[59]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[60]  S. Spriano,et al.  Alkaline phosphatase grafting on bioactive glasses and glass ceramics. , 2010, Acta biomaterialia.

[61]  F. Tancret,et al.  Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics , 2006 .

[62]  W. Pabst,et al.  Elasticity of porous ceramics—A critical study of modulus−porosity relations , 2006 .

[63]  X Zhang,et al.  Bone induction by porous glass ceramic made from Bioglass (45S5). , 2001, Journal of biomedical materials research.

[64]  R. Rice Grain size and porosity dependence of ceramic fracture energy and toughness at 22 °C , 1996, Journal of Materials Science.

[65]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[66]  W. Hayes,et al.  Tensile strength of bovine trabecular bone. , 1985, Journal of biomechanics.

[67]  R. Rice Grain size and porosity dependence of ceramic fracture energy and toughness at 22 ~ , 2022 .