Muscarinic acetylcholine receptor-dependent and NMDA receptor-dependent LTP and LTD share the common AMPAR trafficking pathway

[1]  E. Jutkiewicz,et al.  Drug Design Targeting the Muscarinic Receptors and the Implications in Central Nervous System Disorders , 2022, Biomedicines.

[2]  J. Marco-Contelles,et al.  Efficacy of Acetylcholinesterase Inhibitors on Cognitive Function in Alzheimer’s Disease. Review of Reviews , 2021, Biomedicines.

[3]  D. Perez α1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition , 2020, Frontiers in Pharmacology.

[4]  T. Sumi,et al.  Mechanism underlying hippocampal long-term potentiation and depression based on competition between endocytosis and exocytosis of AMPA receptors , 2020, Scientific Reports.

[5]  T. Oertner,et al.  Endoplasmic reticulum visits highly active spines and prevents runaway potentiation of synapses , 2020, Nature Communications.

[6]  D. Mango,et al.  Targeting Synaptic Plasticity in Experimental Models of Alzheimer’s Disease , 2019, Front. Pharmacol..

[7]  Mikyoung Park AMPA Receptor Trafficking for Postsynaptic Potentiation , 2018, Front. Cell. Neurosci..

[8]  J. G. Hanley The Regulation of AMPA Receptor Endocytosis by Dynamic Protein-Protein Interactions , 2018, Front. Cell. Neurosci..

[9]  Sven Sahle,et al.  COPASI and its applications in biotechnology. , 2017, Journal of biotechnology.

[10]  Y. Lai,et al.  The calcium sensor synaptotagmin 1 is expressed and regulated in hippocampal postsynaptic spines , 2017, Hippocampus.

[11]  T. Sumi,et al.  Numerical calculation on a two-step subdiffusion behavior of lateral protein movement in plasma membranes. , 2017, Physical Review E.

[12]  T. Sumi Myosin V: Chemomechanical-coupling ratchet with load-induced mechanical slip , 2017, Scientific Reports.

[13]  A. Bygrave,et al.  PICK1 regulates AMPA receptor endocytosis via direct interactions with AP2 α-appendage and dynamin , 2017, The Journal of cell biology.

[14]  Y. Humeau,et al.  Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors , 2017, Nature.

[15]  Kim T. Blackwell,et al.  β-adrenergic signaling broadly contributes to LTP induction , 2017, PLoS Comput. Biol..

[16]  T. Südhof,et al.  Postsynaptic Synaptotagmins Mediate AMPA Receptor Exocytosis During LTP , 2017, Nature.

[17]  G. Antunes,et al.  Stochastic Induction of Long-Term Potentiation and Long-Term Depression , 2016, Scientific Reports.

[18]  Louis H Philipson,et al.  Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis , 2016, PloS one.

[19]  J. Gorski,et al.  NMDA Receptor-Dependent LTD Requires Transient Synaptic Incorporation of Ca2+-Permeable AMPARs Mediated by AKAP150-Anchored PKA and Calcineurin , 2016, Neuron.

[20]  Kim T. Blackwell,et al.  Control of βAR- and N-methyl-D-aspartate (NMDA) Receptor-Dependent cAMP Dynamics in Hippocampal Neurons , 2016, PLoS Comput. Biol..

[21]  A. Heguy,et al.  Calorie Restriction Suppresses Age-Dependent Hippocampal Transcriptional Signatures , 2015, PloS one.

[22]  J. Montgomery,et al.  Synaptic activity regulates AMPA receptor trafficking through different recycling pathways , 2015, eLife.

[23]  Y. Goda,et al.  The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity , 2014, Front. Cell. Neurosci..

[24]  R. Huganir,et al.  PKA-GluA1 Coupling via AKAP5 Controls AMPA Receptor Phosphorylation and Cell-Surface Targeting during Bidirectional Homeostatic Plasticity , 2014, Neuron.

[25]  T. Südhof,et al.  Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle , 2013, Neuron.

[26]  M. Kneussel,et al.  Myosin motors at neuronal synapses: drivers of membrane transport and actin dynamics , 2013, Nature Reviews Neuroscience.

[27]  T. Südhof,et al.  LTP Requires a Unique Postsynaptic SNARE Fusion Machinery , 2013, Neuron.

[28]  A. Caccamo,et al.  CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer's disease , 2010, Alzheimer's & Dementia.

[29]  J. Gorski,et al.  AKAP150-Anchored Calcineurin Regulates Synaptic Plasticity by Limiting Synaptic Incorporation of Ca2+-Permeable AMPA Receptors , 2012, The Journal of Neuroscience.

[30]  G. Collingridge,et al.  Targeting Synaptic Dysfunction in Alzheimer’s Disease Therapy , 2012, Molecular Neurobiology.

[31]  Erik De Schutter,et al.  A Stochastic Signaling Network Mediates the Probabilistic Induction of Cerebellar Long-Term Depression , 2012, The Journal of Neuroscience.

[32]  R. Huganir,et al.  Regulation of AMPA receptor trafficking and synaptic plasticity , 2012, Current Opinion in Neurobiology.

[33]  R. Malenka,et al.  NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). , 2012, Cold Spring Harbor perspectives in biology.

[34]  Kim T. Blackwell,et al.  Subcellular Location of PKA Controls Striatal Plasticity: Stochastic Simulations in Spiny Dendrites , 2012, PLoS Comput. Biol..

[35]  T. Südhof,et al.  Postsynaptic Complexin Controls AMPA Receptor Exocytosis during LTP , 2012, Neuron.

[36]  S. Pugazhenthi,et al.  Downregulation of CREB expression in Alzheimer's brain and in Aβ-treated rat hippocampal neurons , 2011, Molecular Neurodegeneration.

[37]  J. Foskett,et al.  Constitutive cAMP response element binding protein (CREB) activation by Alzheimer's disease presenilin-driven inositol trisphosphate receptor (InsP3R) Ca2+ signaling , 2011, Proceedings of the National Academy of Sciences.

[38]  Chad R. Weisbrod,et al.  Architecture and dynamics of an A-kinase anchoring protein 79 (AKAP79) signaling complex , 2011, Proceedings of the National Academy of Sciences.

[39]  J. Valero,et al.  The role of CREB signaling in Alzheimer’s disease and other cognitive disorders , 2011, Reviews in the neurosciences.

[40]  L. Saksida,et al.  Impaired Attention in the 3xTgAD Mouse Model of Alzheimer's Disease: Rescue by Donepezil (Aricept) , 2011, The Journal of Neuroscience.

[41]  Julie R. Leitz,et al.  Tau Protein Is Required for Amyloid β-Induced Impairment of Hippocampal Long-Term Potentiation , 2011, The Journal of Neuroscience.

[42]  H. Gerdes,et al.  The role of myosin V in exocytosis and synaptic plasticity , 2011, Journal of neurochemistry.

[43]  R. Huganir,et al.  Developmental regulation of protein interacting with C kinase 1 (PICK1) function in hippocampal synaptic plasticity and learning , 2010, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Huganir,et al.  GRIP1 and 2 regulate activity-dependent AMPA receptor recycling via exocyst complex interactions , 2010, Proceedings of the National Academy of Sciences.

[45]  G. Collingridge,et al.  Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95 , 2010, Nature Neuroscience.

[46]  R. Yasuda,et al.  AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK–dependent manner during long-term potentiation , 2010, Proceedings of the National Academy of Sciences.

[47]  P. Conn,et al.  Metabotropic glutamate receptors: physiology, pharmacology, and disease. , 2010, Annual review of pharmacology and toxicology.

[48]  Craig W. Lindsley,et al.  Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation , 2009, Proceedings of the National Academy of Sciences.

[49]  Douglas B. Kell,et al.  Deterministic mathematical models of the cAMP pathway in Saccharomyces cerevisiae , 2009, BMC Systems Biology.

[50]  G. Collingridge,et al.  A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-α , 2009, Molecular Brain.

[51]  R. Nicoll,et al.  Subunit Composition of Synaptic AMPA Receptors Revealed by a Single-Cell Genetic Approach , 2009, Neuron.

[52]  T. Südhof,et al.  Complexin Controls the Force Transfer from SNARE Complexes to Membranes in Fusion , 2009, Science.

[53]  Michael D. Ehlers,et al.  Myosin Vb Mobilizes Recycling Endosomes and AMPA Receptors for Postsynaptic Plasticity , 2008, Cell.

[54]  Roberto Malinow,et al.  Cholinergic-Mediated IP3-Receptor Activation Induces Long-Lasting Synaptic Enhancement in CA1 Pyramidal Neurons , 2008, The Journal of Neuroscience.

[55]  Brad E. Pfeiffer,et al.  Multiple Gq-Coupled Receptors Converge on a Common Protein Synthesis-Dependent Long-Term Depression That Is Affected in Fragile X Syndrome Mental Retardation , 2007, The Journal of Neuroscience.

[56]  M. Zhuo,et al.  Long‐term depression requires postsynaptic AMPA GluR2 receptor in adult mouse cingulate cortex , 2007, Journal of cellular physiology.

[57]  R. Malinow,et al.  AMPAR Removal Underlies Aβ-Induced Synaptic Depression and Dendritic Spine Loss , 2006, Neuron.

[58]  Hailong Lu,et al.  Regulation of Myosin V Processivity by Calcium at the Single Molecule Level* , 2006, Journal of Biological Chemistry.

[59]  Jeanette Kotaleski,et al.  Transient Calcium and Dopamine Increase PKA Activity and DARPP-32 Phosphorylation , 2006, PLoS Comput. Biol..

[60]  Thomas Höfer,et al.  Models of IP3 and Ca2+ oscillations: frequency encoding and identification of underlying feedbacks. , 2006, Biophysical journal.

[61]  M. K. Ward,et al.  Sympathetic Sprouting Drives Hippocampal Cholinergic Reinnervation That Prevents Loss of a Muscarinic Receptor-Dependent Long-Term Depression at CA3–CA1 Synapses , 2006, The Journal of Neuroscience.

[62]  Jun Xia,et al.  Targeted In Vivo Mutations of the AMPA Receptor Subunit GluR2 and Its Interacting Protein PICK1 Eliminate Cerebellar Long-Term Depression , 2006, Neuron.

[63]  F. LaFerla,et al.  M1 Receptors Play a Central Role in Modulating AD-like Pathology in Transgenic Mice , 2006, Neuron.

[64]  J. Henley,et al.  PICK1 is a calcium‐sensor for NMDA‐induced AMPA receptor trafficking , 2005, The EMBO journal.

[65]  M. Waxham,et al.  Kinetics of calmodulin binding to calcineurin. , 2005, Biochemical and biophysical research communications.

[66]  Wei Lu,et al.  PICK1 Interacts with ABP/GRIP to Regulate AMPA Receptor Trafficking , 2005, Neuron.

[67]  Upinder S. Bhalla,et al.  Molecular Switches at the Synapse Emerge from Receptor and Kinase Traffic , 2005, PLoS Comput. Biol..

[68]  I. Kohane,et al.  Gene regulation and DNA damage in the ageing human brain , 2004, Nature.

[69]  R. Kesner,et al.  Cholinergic modulation of the hippocampus during encoding and retrieval of tone/shock-induced fear conditioning. , 2004, Learning & memory.

[70]  Ian McPhee,et al.  Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A‐mediated phosphorylation of a single serine residue in Upstream Conserved Region 1 (UCR1) , 2002, British journal of pharmacology.

[71]  Pankaj Sah,et al.  Nuclear Calcium Signaling Evoked by Cholinergic Stimulation in Hippocampal CA1 Pyramidal Neurons , 2002, The Journal of Neuroscience.

[72]  J. Falke,et al.  C2 domains of protein kinase C isoforms alpha, beta, and gamma: activation parameters and calcium stoichiometries of the membrane-bound state. , 2002, Biochemistry.

[73]  R. Quirion,et al.  Alzheimer's disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. , 2002, Progress in neurobiology.

[74]  T. Beach,et al.  Reduction of cerebrospinal fluid amyloid β after systemic administration of M1 muscarinic agonists , 2001, Brain Research.

[75]  Hilmar Bading,et al.  Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity , 2001, Nature Neuroscience.

[76]  G. Collingridge,et al.  PDZ Proteins Interacting with C-Terminal GluR2/3 Are Involved in a PKC-Dependent Regulation of AMPA Receptors at Hippocampal Synapses , 2000, Neuron.

[77]  W. N. Ross,et al.  Inositol 1,4,5-Trisphosphate (IP3)-Mediated Ca2+ Release Evoked by Metabotropic Agonists and Backpropagating Action Potentials in Hippocampal CA1 Pyramidal Neurons , 2000, The Journal of Neuroscience.

[78]  K. Homma,et al.  Ca2+-dependent Regulation of the Motor Activity of Myosin V* , 2000, The Journal of Biological Chemistry.

[79]  R. Huganir,et al.  Targeting of PKA to Glutamate Receptors through a MAGUK-AKAP Complex , 2000, Neuron.

[80]  E. Fauman,et al.  Analysis of a mutation in phosphodiesterase type 4 that alters both inhibitor activity and nucleotide selectivity. , 2000, Molecular pharmacology.

[81]  R. Jaffard,et al.  Contextual fear conditioning is associated with an increase of acetylcholine release in the hippocampus of rat. , 2000, Brain research. Cognitive brain research.

[82]  F. Fadda,et al.  Serotonin and acetylcholine release response in the rat hippocampus during a spatial memory task , 1999, Neuroscience.

[83]  R. Mohs,et al.  Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. , 1998, Archives of internal medicine.

[84]  Roger Y. Tsien,et al.  Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression , 1998, Nature.

[85]  K. Deisseroth,et al.  Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons , 1998, Nature.

[86]  A. Levey Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[87]  R. Graham,et al.  alpha 1-adrenergic receptor subtypes. Molecular structure, function, and signaling. , 1996, Circulation research.

[88]  C. Felder Muscarinic acetylcholine receptors: signal transduction through multiple effectors , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[89]  R. Sharma,et al.  Molecular interaction between cAMP and calcium in calmodulin-dependent cyclic nucleotide phosphodiesterase system. , 1994, Clinical and investigative medicine. Medecine clinique et experimentale.

[90]  G. Shull,et al.  Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. , 1992, The Journal of biological chemistry.

[91]  S. DeKosky,et al.  Synapse loss in frontal cortex biopsies in Alzheimer's disease: Correlation with cognitive severity , 1990, Annals of neurology.

[92]  R. Sharma,et al.  Regulation of cAMP concentration by calmodulin-dependent cyclic nucleotide phosphodiesterase. , 1986, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[93]  R. Bartus,et al.  The cholinergic hypothesis of geriatric memory dysfunction. , 1982, Science.

[94]  J. Coyle,et al.  Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. , 1982, Science.

[95]  J. Coyle,et al.  Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis , 1981, Annals of neurology.