Investigation of the effect of different gravity conditions on penetration mechanisms by the Distinct Element Method

Purpose – The purpose of this paper is to present an investigation of the effect of different gravity conditions on the penetration mechanism using the two-dimensional Distinct Element Method (DEM), which ranges from high gravity used in centrifuge model tests to low gravity incurred by serial parabolic flight, with the aim of efficiently analyzing cone penetration tests on the lunar surface. Design/methodology/approach – Seven penetration tests were numerically simulated on loose granular ground under different gravity conditions, i.e. one-sixth, one-half, one, five, ten, 15 and 20 terrestrial gravities. The effect of gravity on the mechanisms is examined with aspect to the tip resistance, deformation pattern, displacement paths, stress fields, stress paths, strain and rotation paths, and velocity fields during the penetration process. Findings – First, under both low and high gravities, the penetration leads to high gradients of the value and direction of stresses in addition to high gradients in the ve...

[1]  Jean-Yves Delenne,et al.  Mechanical behaviour and failure of cohesive granular materials , 2004 .

[2]  Mingjing Jiang,et al.  Experimental investigation on deformation behavior of TJ-1 lunar soil simulant subjected to principal stress rotation , 2013 .

[3]  Hai-Sui Yu,et al.  A particle refinement method for simulating DEM of cone penetration testing in granular materials , 2012 .

[4]  Guy T. Houlsby,et al.  FINITE CAVITY EXPANSION IN DILATANT SOILS: LOADING ANALYSIS , 1991 .

[5]  Hiroshi Nakashima,et al.  Specific Cutting Resistance of Lunar Regolith Simulant under Low Gravity Conditions , 2008 .

[6]  Ross W. Boulanger,et al.  Shear Localization Due to Liquefaction-Induced Void Redistribution in a Layered Infinite Slope , 2006 .

[7]  Ken Been,et al.  THE CONE PENETRATION TEST IN SANDS: PART II, GENERAL INFERENCE OF STATE , 1987 .

[8]  G T Houlsby,et al.  CALIBRATION CHAMBER TESTS OF A CONE PENETROMETER IN SAND. DISCUSSION , 1988 .

[9]  Serge Leroueil,et al.  An efficient technique for generating homogeneous specimens for DEM studies , 2003 .

[10]  Herbert F. Clough,et al.  Centrifuge model experiments to determine ice forces on vertical cylindrical structures , 1986 .

[11]  Fang Liu,et al.  Distinct element simulation of lugged wheel performance under extraterrestrial environmental effects , 2014 .

[12]  J. Thompson,et al.  Simulating the Effects of Gravitational Field and Atmosphere on Behavior of Granular Media , 1969 .

[13]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[14]  Richard M. Lueptow,et al.  Behavior of flowing granular materials under variable g. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  A. S. Vesić Expansion of Cavities in Infinite Soil Mass , 1972 .

[16]  F. Liu,et al.  A bond contact model for methane hydrate‐bearing sediments with interparticle cementation , 2014 .

[17]  G. T. Cohron,et al.  Cone penetration resistance test - An approach to evaluating in-place strength and packing characteristics of lunar soils , 1971 .

[18]  Serge Leroueil,et al.  Insight into shear strength functions of unsaturated granulates by DEM analyses , 2004 .

[19]  Boris Jeremić,et al.  MECHANICS OF GRANULAR MATERIALS AT Low EFFECTIVE STRESSES , 1998 .

[20]  James K. Mitchell,et al.  TESTING OF REINFORCED SLOPES IN A GEOTECHNICAL CENTRIFUGE , 1997 .

[21]  S. Leroueil,et al.  Closure to “Two-Dimensional Discrete Element Theory for Rough Particles” by Mingjing Jiang, Serge Leroueil, Hehua Zhu, Hai-Sui Yu, and Jean-Marie Konrad , 2011 .

[22]  Mingjing Jiang,et al.  Classical and non-classical kinematic fields of two-dimensional penetration tests on granular ground by discrete element method analyses , 2008 .

[23]  Serge Leroueil,et al.  A simple and efficient approach to capturing bonding effect in naturally microstructured sands by discrete element method , 2007 .

[24]  A. Palmer,et al.  Uplift resistance of buried submarine pipelines: comparison between centrifuge modelling and full-scale tests , 2003 .

[25]  L. Cui,et al.  Investigating mechanism of inclined CPT in granular ground using DEM , 2014 .

[26]  R. Borst,et al.  POSSIBILITIES AND LIMITATIONS OF FINITE ELEMENTS FOR LIMIT ANALYSIS , 1984 .

[27]  Hai-Sui Yu,et al.  Kinematic models for non‐coaxial granular materials. Part I: theory , 2005 .

[28]  M. Jiang,et al.  Study of mechanical behavior and strain localization of methane hydrate bearing sediments with different saturations by a new DEM model , 2014 .

[29]  A. Hassanpour,et al.  Analysis of ball indentation on cohesive powder beds using distinct element modelling , 2013 .

[30]  Kiyoshi Omine,et al.  Mobility performance of a rigid wheel in low gravity environments , 2010 .

[31]  Hai-Sui Yu,et al.  Kinematic models for non‐coaxial granular materials. Part II: evaluation , 2005 .

[32]  Yu-Hsing Wang,et al.  Characterization of Cemented Sand by Experimental and Numerical Investigations , 2008 .

[33]  C. Thornton NUMERICAL SIMULATIONS OF DEVIATORIC SHEAR DEFORMATION OF GRANULAR MEDIA , 2000 .

[34]  M. Jiang,et al.  Cavity expansion analyses of crushable granular materials with state‐dependent dilatancy , 2012 .

[35]  B. White,et al.  Dynamic shear of granular material under variable gravity conditions , 1988 .

[36]  J. Sladen PROBLEMS WITH INTERPRETATION OF SAND STATE FROM CONE PENETRATION TEST , 1989 .

[37]  Scott W. Sloan,et al.  Finite element analysis of cone penetration in cohesionless soil , 2004 .

[38]  M. M. Baligh Strain Path Method , 1985 .

[39]  Majidreza Nazem,et al.  Dynamic analysis of a smooth penetrometer free-falling into uniform clay , 2012 .

[40]  Serge Leroueil,et al.  Yielding of Microstructured Geomaterial by Distinct Element Method Analysis , 2005 .

[41]  Mingjing Jiang,et al.  Numerical analyses of braced excavation in granular grounds: continuum and discrete element approaches , 2013 .

[42]  Jean-Pierre Bardet,et al.  Observations on the effects of particle rotations on the failure of idealized granular materials , 1994 .

[43]  Colin Thornton,et al.  Microscopic contact model of lunar regolith for high efficiency discrete element analyses , 2013 .

[44]  Hehua Zhu,et al.  Two-Dimensional Discrete Element Theory for Rough Particles , 2009 .

[45]  A. Anandarajah,et al.  On influence of fabric anisotropy on the stress-strain behavior of clays , 2000 .

[46]  S. Aoki,et al.  Bearing capacity of shallow foundations in a low gravity environment , 2009 .

[47]  M. Nakagawa,et al.  Wave Velocities in Granular Materials under Microgravity , 2007 .

[48]  Malcolm D. Bolton,et al.  Crushing and plastic deformation of soils simulated using DEM , 2004 .

[49]  Malcolm D. Bolton,et al.  On the micromechanics of crushable aggregates , 1998 .

[50]  Hai-Sui Yu,et al.  Discrete element modelling of deep penetration in granular soils , 2006 .

[51]  Shunying Ji,et al.  Two-Dimensional Simulation of the Angle of Repose for a Particle System with Electrostatic Charge under Lunar and Earth Gravity , 2009 .

[52]  Peter Eberhard,et al.  Prediction of draft forces in cohesionless soil with the Discrete Element Method , 2011 .

[53]  A. J. Valsangkar,et al.  Earth pressures on unyielding retaining walls of narrow backfill width , 2001 .

[54]  Hiroshi Nakashima,et al.  Parametric analysis of lugged wheel performance for a lunar microrover by means of DEM , 2007 .

[55]  Hiroshi Nakashima,et al.  Determining the angle of repose of sand under low-gravity conditions using discrete element method , 2011 .

[56]  Ross W. Boulanger,et al.  Postshaking Shear Strain Localization in a Centrifuge Model of a Saturated Sand Slope , 2008 .

[57]  Nicholas Sitar,et al.  Centrifuge Model Studies of the Seismic Response of Reinforced Soil Slopes , 2006 .

[58]  Jianfeng Wang,et al.  DEM Analyses of an Uplift Failure Mechanism with Pipe Buried in Cemented Granular Ground , 2015 .

[59]  Patricia J. Langhorne,et al.  The bearing capacity of saline ice sheets: centrifugal modelling , 1999 .

[60]  Mingjing Jiang,et al.  Future continuum models for granular materials in penetration analyses , 2006 .

[61]  Hai-Sui Yu,et al.  Kinematic variables bridging discrete and continuum granular mechanics , 2006 .

[62]  D. Singh,et al.  Estimation of hydraulic conductivity of unsaturated soils using a geotechnical centrifuge , 2002 .

[63]  S W Perkins,et al.  Mechanical and Load-Settlement Characteristics of Two Lunar Soil Simulants , 1996 .

[64]  R. Sullivan,et al.  Discrete element modeling of a Mars Exploration Rover wheel in granular material , 2012 .

[65]  James K. Mitchell,et al.  New Perspectives on Soil Creep , 1993 .

[66]  Guy T. Houlsby,et al.  Analysis of the cone pressuremeter test in clay , 1988 .

[67]  Joanna Butlanska,et al.  Cone penetration test in a virtual calibration chamber , 2014 .

[68]  Jean-Noël Roux,et al.  Rheophysics of dense granular materials: discrete simulation of plane shear flows. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Sayavur I. Bakhtiyarov,et al.  Fluidized bed viscosity measurements in reduced gravity , 1998 .

[70]  Hai-Sui Yu,et al.  Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses , 2006 .

[71]  George Z. Voyiadjis,et al.  A large strain theory and its application in the analysis of the cone penetration mechanism , 1988 .

[72]  Mingjing Jiang,et al.  An evaluation on the degradation evolutions in three constitutive models for bonded geomaterials by DEM analyses , 2014 .

[73]  Fernando Schnaid,et al.  Sand characterization by combined centrifuge and laboratory tests , 2005 .

[74]  W. E. Larson,et al.  Integration of In-Situ Resource Utilization Into Lunar/Mars Exploration Through Field Analogs , 2011 .

[75]  V. Chandrasekaran,et al.  Swelling of Black Cotton Soil Using Centrifuge Modeling , 1994 .

[76]  Hehua Zhu,et al.  Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses , 2011 .

[77]  Hai-Sui Yu,et al.  A novel discrete model for granular material incorporating rolling resistance , 2005 .

[78]  Ramesh C. Gupta FINITE STRAIN ANALYSIS FOR DEEP CONE PENETRATION , 1991 .

[79]  H. T. Durgunoglu,et al.  Static penetration resistance of soils , 1973 .

[80]  C. Thornton,et al.  DEM analyses of one-dimensional compression and collapse behaviour of unsaturated structural loess , 2014 .

[81]  Wei Wu,et al.  Numerical study of miniature penetrometer in granular material by discrete element method , 2012 .

[82]  Hehua Zhu,et al.  Strain localization analyses of idealized sands in biaxial tests by distinct element method , 2010 .

[83]  Malcolm D. Bolton,et al.  Centrifuge cone penetration tests in sand , 1999 .

[84]  Gholamreza Mesri,et al.  The coefficient of earth pressure at rest , 1993 .

[85]  P. K. Robertson In situ testing and its application to foundation engineering , 1986 .

[86]  G. W. E. Milligan,et al.  CENTRIFUGE MODEL TESTS OF NAILED SOIL SLOPES , 1998 .

[87]  Malcolm D. Bolton,et al.  Collapse limit states of reinforced earth retaining walls , 1981 .

[88]  John C. Wells,et al.  Numerical and experimental studies of gravity effect on the mechanism of lunar excavations , 2009 .

[89]  Akira Murakami,et al.  Distinct element method analyses of idealized bonded-granulate cut slope , 2012, Granular Matter.

[90]  L. Herrmann,et al.  Analysis of steady cone penetration in clay , 2000 .

[91]  Mingjing Jiang,et al.  Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method , 2012 .

[92]  Wesley D. Scott,et al.  EXCAVATION FORCES IN REDUCED GRAVITY ENVIRONMENT , 1997 .

[93]  A. Huang,et al.  An analytical study of cone penetration tests in granular material , 1994 .

[94]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[95]  Mingjing Jiang,et al.  Properties of TJ-1 Lunar Soil Simulant , 2012 .