Stochastic Approximation Finite Element Method: Analytical Formulas for Multidimensional Diffusion Process

We derive an analytical weak approximation of a multidimensional diffusion process as coefficients are small or time is small. Our methodology combines the use of Gaussian proxies to approximate the law of the diffusion and a finite element interpolation of the terminal function applied to the diffusion. We call this the stochastic approximation finite element (SAFE) method. We provide error bounds of our global approximation depending on the diffusion process coefficients, the time horizon, and the regularity of the terminal function. Then we give estimates of the computational cost of our algorithm. This shows an improved efficiency compared to Monte-Carlo methods in small and medium dimensions (smaller than 10), which is confirmed by numerical experiments.

[1]  国田 寛 Stochastic flows and stochastic differential equations , 1990 .

[2]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[3]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  P. Glynn,et al.  Efficient Monte Carlo Simulation of Security Prices , 1995 .

[6]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[7]  D. Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996 .

[8]  D. Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996, Monte Carlo Methods Appl..

[9]  S. Graf,et al.  Foundations of Quantization for Probability Distributions , 2000 .

[10]  E. Gobet Euler schemes and half-space approximation for the simulation of diffusion in a domain , 2001 .

[11]  Malliavin Calculus,et al.  Approximation of Expectation of Diffusion Processes based on Lie Algebra and Malliavin Calculus , 2003 .

[12]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[13]  Terry Lyons,et al.  Cubature on Wiener space , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  A. Kebaier,et al.  Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing , 2005, math/0602529.

[15]  S. Ninomiya,et al.  Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing , 2006, math/0605361.

[16]  E. Gobet,et al.  Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations , 2006 .

[17]  G. Pagès,et al.  A quantization algorithm for solving multi-dimensional Optimal Stopping problems , 2007 .

[18]  D. Crisan,et al.  Fundamentals of Stochastic Filtering , 2008 .

[19]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[20]  G. Papanicolaou,et al.  Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives , 2011 .

[21]  E. Gobet,et al.  Asymptotic and Non Asymptotic Approximations for Option Valuation , 2012 .

[22]  R. Bompis,et al.  Stochastic expansion for the diffusion processes and applications to option pricing , 2013 .

[23]  Matthew J. Lorig,et al.  EXPLICIT IMPLIED VOLATILITIES FOR MULTIFACTOR LOCAL‐STOCHASTIC VOLATILITY MODELS , 2013 .

[24]  Emmanuel Gobet,et al.  Weak approximation of averaged diffusion processes , 2014 .

[25]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .