Nature of slab-mantle interactions recorded by coupled δ13C–δ15N–δ18O signatures and elemental compositions of Koidu diamonds and their inclusions

[1]  Kan Li,et al.  Nitrogen enrichments in sheeted dikes and gabbros from DSDP/ODP/IODP Hole 504B and 1256D: Insights into nitrogen recycling in Central America and global subduction zones , 2022, Geochimica et Cosmochimica Acta.

[2]  S. Aulbach,et al.  Mineral Inclusions in Lithospheric Diamonds , 2022, Reviews in Mineralogy and Geochemistry.

[3]  R. Stern,et al.  Formation of mixed paragenesis diamonds during multistage growth – constraints from in situ δ13C–δ15N–[N] analyses of Koidu diamonds , 2022, Geochimica et Cosmochimica Acta.

[4]  Jabrane Labidi The origin of nitrogen in Earth's mantle: Constraints from basalts 15N/14N and N2/3He ratios , 2022, Chemical Geology.

[5]  D. Sverjensky,et al.  A genetic metasomatic link between eclogitic and peridotitic diamond inclusions , 2021, Geochemical Perspectives Letters.

[6]  S. Aulbach Temperature-dependent Rutile Solubility in Garnet and Clinopyroxene from Mantle Eclogite: Implications for Continental Crust Formation and V-based Oxybarometry , 2020 .

[7]  J. Harris,et al.  The lithospheric-to-lower-mantle carbon cycle recorded in superdeep diamonds , 2020, Nature.

[8]  K. Viljoen,et al.  Ultramafic Carbonated Melt‐ and Auto‐Metasomatism in Mantle Eclogites: Compositional Effects and Geophysical Consequences , 2020, Geochemistry, Geophysics, Geosystems.

[9]  T. Pettke,et al.  Subducting serpentinites release reduced, not oxidized, aqueous fluids , 2019, Scientific Reports.

[10]  D. Pearson,et al.  Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling , 2019, Earth and Planetary Science Letters.

[11]  N. Arndt,et al.  Origin of high-Mg bimineralic eclogite xenoliths in kimberlite – reply to comment from Claude Herzberg , 2019, Earth and Planetary Science Letters.

[12]  D. Pearson,et al.  An oxygen isotope test for the origin of Archean mantle roots , 2018, Geochemical Perspectives Letters.

[13]  Xian‐Hua Li,et al.  The oxygen isotope composition of mantle eclogites as a proxy of their origin and evolution: A review , 2018, Earth-Science Reviews.

[14]  M. Izawa,et al.  Nitrogen Concentrations and Isotopic Compositions of Seafloor-Altered Terrestrial Basaltic Glass: Implications for Astrobiology , 2017, Astrobiology.

[15]  K. Viljoen,et al.  Eclogite xenoliths from Orapa: Ocean crust recycling, mantle metasomatism and carbon cycling at the western Zimbabwe craton margin , 2017 .

[16]  D. Sverjensky,et al.  Highly oxidising fluids generated during serpentinite breakdown in subduction zones , 2017, Scientific Reports.

[17]  D. Frost,et al.  The depth of sub-lithospheric diamond formation and the redistribution of carbon in the deep mantle , 2017 .

[18]  S. Kohn,et al.  Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite: Evidence for diamond growth from slab melts , 2016 .

[19]  S. Shirey,et al.  Type Ib diamond formation and preservation in the West African lithospheric mantle: Re–Os age constraints from sulphide inclusions in Zimmi diamonds , 2016 .

[20]  D. Jacob,et al.  Major- and trace-elements in cratonic mantle eclogites and pyroxenites reveal heterogeneous sources and metamorphic processing of low-pressure protoliths , 2016 .

[21]  D. Rubatto,et al.  Eclogitic diamonds from variable crustal protoliths in the northeastern Siberian craton: trace elements and coupled δ13C – δ18O signatures in diamonds and garnet inclusions , 2016 .

[22]  B. Kjarsgaard,et al.  In situ oxygen-isotope, major-, and trace-element constraints on the metasomatic modification and crustal origin of a diamondiferous eclogite from Roberts Victor, Kaapvaal Craton , 2016 .

[23]  S. Kohn,et al.  Slab melting as a barrier to deep carbon subduction , 2016, Nature.

[24]  S. Kohn,et al.  Stable isotope evidence for crustal recycling as recorded by superdeep diamonds , 2015 .

[25]  R. Stern,et al.  Extreme 18O-enrichment in majorite constrains a crustal origin of transition zone diamonds , 2015 .

[26]  P. Cartigny,et al.  Diamond Formation: A Stable Isotope Perspective , 2014 .

[27]  A. Jones,et al.  Constraining the internal variability of the stable isotopes of carbon and nitrogen within mantle diamonds , 2014 .

[28]  H. Tkalčić,et al.  Metapyroxenite in the mantle transition zone revealed from majorite inclusions in diamonds , 2013 .

[29]  A. Locock,et al.  Nomenclature of the garnet supergroup , 2013 .

[30]  R. Stern,et al.  Diamond from recycled crustal carbon documented by coupled δ18O–δ13C measurements of diamonds and theirinclusions , 2013 .

[31]  S. Aulbach,et al.  Chalcophile and siderophile elements in sulphide inclusions in eclogitic diamonds and metal cycling in a Paleoproterozoic subduction zone , 2012 .

[32]  R. Stern,et al.  Eclogite formation beneath the northern Slave craton constrained by diamond inclusions: Oceanic lithosphere origin without a crustal signature , 2012 .

[33]  L. Heaman,et al.  Microxenoliths from the Slave craton: Archives of diamond formation along fluid conduits , 2011 .

[34]  A. Rohrbach,et al.  Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling , 2011, Nature.

[35]  B. Kamber,et al.  Majoritic garnet: A new approach to pressure estimation of shock events in meteorites and the encapsulation of sub-lithospheric inclusions in diamond , 2010 .

[36]  L. Heaman,et al.  The origin of high-MgO diamond eclogites from the Jericho Kimberlite, Canada , 2009 .

[37]  Andrew J. Locock,et al.  An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets , 2008, Comput. Geosci..

[38]  S. Clark,et al.  Primary carbonatite melt from deeply subducted oceanic crust , 2008, Nature.

[39]  D. Frost,et al.  The Redox State of Earth's Mantle , 2008 .

[40]  Long Li,et al.  Nitrogen concentration and δ15N of altered oceanic crust obtained on ODP Legs 129 and 185 : Insights into alteration-related nitrogen enrichment and the nitrogen subduction budget , 2007 .

[41]  M. Bonifacie,et al.  Nitrogen content and isotopic composition of oceanic crust at a superfast spreading ridge: A profile in altered basalts from ODP Site 1256, Leg 206 , 2005 .

[42]  Dorrit E. Jacob Nature and origin of eclogite xenoliths from kimberlites , 2004 .

[43]  A. Menzies,et al.  An updated classification scheme for mantle-derived garnet, for use by diamond explorers , 2004 .

[44]  K. Viljoen,et al.  The trace element composition of silicate inclusions in diamonds: a review , 2004 .

[45]  B. Harte,et al.  Evidence of subduction and crust–mantle mixing from a single diamond , 2004 .

[46]  E. Skinner,et al.  Kimberlites of the Man craton, West Africa , 2004 .

[47]  S. Foley,et al.  Eclogite xenoliths from the Kuruman kimberlites, South Africa: geochemical fingerprinting of deep subduction and cumulate processes ☆ , 2004 .

[48]  Y. Fei,et al.  Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: the significance of exsolved rutile in garnet , 2003 .

[49]  J. Alt Stable isotopic composition of upper oceanic crust formed at a fast spreading ridge, ODP Site 801 , 2003 .

[50]  W. McDonough,et al.  Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites , 2002 .

[51]  W. McDonough,et al.  Geochemistry of xenolithic eclogites from West Africa, Part I: A link between low MgO eclogites and Archean crust formation , 2001 .

[52]  Manfred Schidlowski,et al.  Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept , 2001 .

[53]  J. Valley,et al.  Coesite eclogites from the Roberts Victor kimberlite, South Africa , 2000 .

[54]  D. Laporte,et al.  Ultrafast mantle impregnation by carbonatite melts , 2000 .

[55]  J. Valley,et al.  Oxygen and hydrogen isotope study of high-pressure metagabbros and metabasalts (Cyclades, Greece): implications for the subduction of oceanic crust , 2000 .

[56]  D. Lowry,et al.  Oxygen isotope composition of syngenetic inclusions in diamond from the Finsch Mine, RSA , 1999 .

[57]  Jeff W. Harris,et al.  Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania , 1998 .

[58]  T. Stachel,et al.  Diamond precipitation and mantle metasomatism – evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana , 1997 .

[59]  B. Harte,et al.  Partitioning of trace elements between clinopyroxene and garnet: data from mantle eclogites , 1997 .

[60]  S. Haggerty,et al.  Petrography and mineral compositions of eclogites from the Koidu Kimberlite Complex, Sierra Leone , 1995 .

[61]  P. Deines,et al.  Petrochemistry of ultradeep (>300 km) and transition zone xenoliths , 1995, International Kimberlite Conference Extended Abstracts: 1995.

[62]  P. Deines,et al.  Sulfide inclusion chemistry and carbon isotopes of African diamonds , 1995 .

[63]  E. Watson,et al.  Interconnectivity of carbonate melt at low melt fraction , 1995 .

[64]  J. Bédard A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids , 1994 .

[65]  D. Lowry,et al.  Diamondiferous eclogites from Siberia: Remnants of Archean oceanic crust , 1994 .

[66]  D. Lowry,et al.  Oxygen isotope composition of mantle peridotite , 1994 .

[67]  M. Fogel,et al.  Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: Implications for metamorphic devolatilization history , 1992 .

[68]  F. Caporuscio,et al.  Trace element crystal chemistry of mantle eclogites , 1990 .

[69]  S. Haggerty,et al.  Petrochemistry of eclogites from the Koidu Kimberlite Complex, Sierra Leone , 1989 .

[70]  D. J. Schulze,et al.  Constraints on the abundance of eclogite in the upper mantle , 1989 .

[71]  T. Irifune An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle , 1987 .

[72]  W. Manton,et al.  Roberts victor eclogites: Ancient oceanic crust , 1986 .

[73]  J. Alt,et al.  An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP hole 504B , 1986 .

[74]  Tetsuo Irifune,et al.  The eclogite-garnetite transformation at high pressure and some geophysical implications , 1986 .

[75]  Rory O. Moore,et al.  Pyroxene solid solution in garnets included in diamond , 1985, Nature.

[76]  C. T. Pillinger,et al.  Carbon isotopic variation in spectral type II diamonds , 1983, Nature.

[77]  H. Taylor,et al.  An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges , 1981 .

[78]  G. Wasserburg,et al.  Sm‐Nd, Rb‐Sr, and 18O/16O isotopic systematics in an oceanic crustal section: Evidence from the Samail Ophiolite , 1981 .

[79]  S. Akimoto,et al.  High-pressure phase equilibria in a garnet lherzolite, with special reference to Mg2+Fe2+ partitioning among constituent minerals , 1979 .

[80]  JOSEPH V. Smith,et al.  Na, K, P and Ti in garnet, pyroxene and olivine from peridotite and eclogite xenoliths from African kimberlites , 1978 .

[81]  N. Christensen,et al.  The seismic velocity structure of a traverse through the Bay of Islands Ophiolite Complex, Newfoundland, An exposure of oceanic crust and upper mantle , 1978 .

[82]  P. Baertschi Absolute18O content of standard mean ocean water , 1976 .

[83]  J. Dawson,et al.  Na, P, Ti and coordination of Si in garnet from peridotite and eclogite xenoliths , 1976, Nature.

[84]  R. Doig,et al.  Eclogite nodules from kimberlite pipes of the Colorado plateau—samples of subducted Franciscan-type oceanic lithosphere , 1973 .

[85]  M. Drake,et al.  Europium Anomaly in Plagioclase Feldspar: Experimental Results and Semiquantitative Model , 1973, Science.

[86]  T. McGetchin,et al.  A crustal-upper-mantle model for the Colorado Plateau based on observations of crystalline rock fragments in the Moses Rock Dike , 1972 .

[87]  R. Clayton,et al.  Oxygen Isotope Geochemistry of Submarine Greenstones , 1972 .

[88]  R. Clayton,et al.  Oxygen Isotope Studies of Fresh and Weathered Submarine Basalts , 1972 .

[89]  A. E. Ringwood,et al.  Synthesis of majorite and other high pressure garnets and perovskites , 1971 .

[90]  H. Taylor,et al.  Oxygen and Carbon Isotope Studies of Contact Metamorphism of Carbonate Rocks , 1969 .

[91]  J. A. Philpotts,et al.  Europium anomalies and the genesis of basalt , 1968 .

[92]  H. S. Yoder,et al.  Formation and fractionation of basic magmas at high pressures , 1967, Scottish Journal of Geology.

[93]  P. Bartholomé Genesis of the Gore Mountain garnet deposit, New York , 1960 .

[94]  E. Watson,et al.  Experimental investigation into the substitution mechanisms and solubility of Ti in garnet , 2017 .

[95]  B. Wood,et al.  The pyroxenite-diamond connection , 2016 .

[96]  J. Valley,et al.  Eclogite-facies fluid infiltration: constraints from δ18O zoning in garnet , 2012, Contributions to Mineralogy and Petrology.

[97]  S. Aulbach,et al.  Eclogitic and websteritic diamond sources beneath the Limpopo Belt – is slab-melting the link? , 2002 .

[98]  Stefan Aulbach,et al.  Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds , 2002 .

[99]  J. Eiler Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle Rocks , 2001 .

[100]  D. Teagle,et al.  Hydrothermal alteration and fluid fluxes in ophiolites and oceanic crust , 2000 .

[101]  M. Otter,et al.  The application of C isotope measurements to the identification of the sources of C in diamonds: a review , 1991 .

[102]  Scott M. McLennan,et al.  Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes , 1989 .

[103]  S. Haggerty,et al.  The Koidu Kimberlite Complex, Sierra Leone: Geological Setting, Petrology and Mineral Chemistry , 1984 .