Indirect Training Algorithms for Spiking Neural Networks Controlled Virtual Insect Navigation

Indirect Training Algorithms for Spiking Neural Networks Controlled Virtual Insect Navigation

[1]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[2]  Wulfram Gerstner,et al.  Hebbian learning of pulse timing in the Barn Owl auditory system , 1999 .

[3]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[4]  L. Abbott,et al.  Model neurons: From Hodgkin-Huxley to hopfield , 1990 .

[5]  Wolfgang Maass,et al.  Noisy Spiking Neurons with Temporal Coding have more Computational Power than Sigmoidal Neurons , 1996, NIPS.

[6]  R. Strauss The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.

[7]  P. De Camilli,et al.  The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Nicholas J. Strausfeld,et al.  Arthropod Brains: Evolution, Functional Elegance, and Historical Significance , 2012 .

[9]  Razvan V. Florian,et al.  Reinforcement Learning Through Modulation of Spike-Timing-Dependent Synaptic Plasticity , 2007, Neural Computation.

[10]  Ioana Sporea,et al.  Supervised Learning in Multilayer Spiking Neural Networks , 2012, Neural Computation.

[11]  Giacomo Indiveri,et al.  Analog VLSI Model of Locust DCMD Neuron Response for Computation of Object Approach , 1998 .

[12]  Antonius M J VanDongen,et al.  The Nonkinase Phorbol Ester Receptor α1-Chimerin Binds the NMDA Receptor NR2A Subunit and Regulates Dendritic Spine Density , 2005, The Journal of Neuroscience.

[13]  E. Isacoff,et al.  Light-activated ion channels for remote control of neuronal firing , 2004, Nature Neuroscience.

[14]  Andreas G. Andreou,et al.  Analog VLSI neuromorphic image acquisition and pre-processing systems , 1995, Neural Networks.

[15]  Phill Rowcliffe,et al.  Training Spiking Neuronal Networks With Applications in Engineering Tasks , 2008, IEEE Transactions on Neural Networks.

[16]  U. Homberg,et al.  Organization and functional roles of the central complex in the insect brain. , 2014, Annual review of entomology.

[17]  Abdulrazak Yahya Saleh,et al.  A Novel hybrid algorithm of Differential evolution with Evolving Spiking Neural Network for pre-synaptic neurons Optimization , 2014 .

[18]  Misha Mahowald,et al.  A silicon model of early visual processing , 1993, Neural Networks.

[19]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[20]  Jean-Pascal Pfister,et al.  Optimal Spike-Timing-Dependent Plasticity for Precise Action Potential Firing in Supervised Learning , 2005, Neural Computation.

[21]  B. Zemelman,et al.  Selective Photostimulation of Genetically ChARGed Neurons , 2002, Neuron.

[22]  Anthony N. Burkitt,et al.  A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input , 2006, Biological Cybernetics.

[23]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[24]  T. Delbruck,et al.  A 128 128 120 dB 15 s Latency Asynchronous Temporal Contrast Vision Sensor , 2006 .

[25]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[26]  Chris Yakopcic,et al.  Memristor-based pattern recognition for image processing: an adaptive coded aperture imaging and sensing opportunity , 2010, Optical Engineering + Applications.

[27]  P. J. Sjöström,et al.  Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity , 2001, Neuron.

[28]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[29]  Florentin Wörgötter,et al.  A neuromorphic depth-from-motion vision model with STDP adaptation , 2006, IEEE Transactions on Neural Networks.

[30]  Nikola Kasabov,et al.  Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. , 2013, Neural networks : the official journal of the International Neural Network Society.

[31]  Sundaram Suresh,et al.  A sequential learning algorithm for a Minimal Spiking Neural Network (MSNN) classifier , 2014, 2014 International Joint Conference on Neural Networks (IJCNN).

[32]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[33]  Eve Marder,et al.  Reduction of conductance-based neuron models , 1992, Biological Cybernetics.

[34]  Simei Gomes Wysoski,et al.  Adaptive Learning Procedure for a Network of Spiking Neurons and Visual Pattern Recognition , 2006, ACIVS.

[35]  H Rostro-Gonzalez,et al.  Parameter estimation in spiking neural networks: a reverse-engineering approach , 2012, Journal of neural engineering.

[36]  Georg Schnitger,et al.  On the computational power of sigmoid versus Boolean threshold circuits , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[37]  Ammar Belatreche,et al.  An online supervised learning method for spiking neural networks with adaptive structure , 2014, Neurocomputing.

[38]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[39]  J. Albus A Theory of Cerebellar Function , 1971 .

[40]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[41]  D Ferster,et al.  Cracking the Neuronal Code , 1995, Science.

[42]  Kyungmin Kim,et al.  Memristor Applications for Programmable Analog ICs , 2011, IEEE Transactions on Nanotechnology.

[43]  Silvia Ferrari,et al.  Biologically realizable reward-modulated hebbian training for spiking neural networks , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[44]  Andrzej J. Kasinski,et al.  Supervised Learning in Spiking Neural Networks with ReSuMe: Sequence Learning, Classification, and Spike Shifting , 2010, Neural Computation.

[45]  C. Pennartz Reinforcement learning by Hebbian synapses with adaptive thresholds , 1997, Neuroscience.

[46]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[47]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[48]  Christof Koch,et al.  An Analog VLSI Model of the Fly Elementary Motion Detector , 1997, NIPS.

[49]  Xu Zhang,et al.  Spike-based indirect training of a spiking neural network-controlled virtual insect , 2013, 52nd IEEE Conference on Decision and Control.

[50]  Y. Dan,et al.  Hebbian depression of isolated neuromuscular synapses in vitro. , 1992, Science.

[51]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[52]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[53]  Y. Dan,et al.  Receptive-Field Modification in Rat Visual Cortex Induced by Paired Visual Stimulation and Single-Cell Spiking , 2006, Neuron.

[54]  David J. Frank,et al.  Nanoscale CMOS , 1999, Proc. IEEE.

[55]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[56]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[57]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[58]  Feng Zhang,et al.  Channelrhodopsin-2 and optical control of excitable cells , 2006, Nature Methods.

[59]  Wolfgang Maass,et al.  Networks of Spiking Neurons: The Third Generation of Neural Network Models , 1996, Electron. Colloquium Comput. Complex..

[60]  N. Strausfeld,et al.  Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia , 2013, Science.

[61]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[62]  Harald Burgsteiner,et al.  Imitation learning with spiking neural networks and real-world devices , 2006, Eng. Appl. Artif. Intell..

[63]  Robert A. Legenstein,et al.  What Can a Neuron Learn with Spike-Timing-Dependent Plasticity? , 2005, Neural Computation.

[64]  Kelin J. Kuhn,et al.  Moore's Law Past 32nm: Future Challenges in Device Scaling , 2009, 2009 13th International Workshop on Computational Electronics.

[65]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[66]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[67]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[68]  Erik De Schutter,et al.  Computational Modeling Methods for Neuroscientists , 2009 .

[69]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[70]  Andrew S. Cassidy,et al.  Cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[71]  Sander M. Bohte,et al.  Error-backpropagation in temporally encoded networks of spiking neurons , 2000, Neurocomputing.

[72]  Silvia Ferrari,et al.  Indirect training of a spiking neural network for flight control via spike-timing-dependent synaptic plasticity , 2010, 49th IEEE Conference on Decision and Control (CDC).

[73]  Ila R Fiete,et al.  Gradient learning in spiking neural networks by dynamic perturbation of conductances. , 2006, Physical review letters.

[74]  Wofgang Maas,et al.  Networks of spiking neurons: the third generation of neural network models , 1997 .

[75]  Jean-Pascal Pfister,et al.  Optimal Hebbian Learning: A Probabilistic Point of View , 2003, ICANN.

[76]  José Carlos Príncipe,et al.  Approximate reconstruction of bandlimited functions for the integrate and fire sampler , 2009, Advances in Computational Mathematics.

[77]  Leon O. Chua,et al.  Neural Synaptic Weighting With a Pulse-Based Memristor Circuit , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[78]  Xu Zhang,et al.  A Radial Basis Function Spike Model for Indirect Learning via Integrate-and-Fire Sampling and Reconstruction Techniques , 2012, Adv. Artif. Neural Syst..

[79]  Wolfgang Maass,et al.  A Reward-Modulated Hebbian Learning Rule Can Explain Experimentally Observed Network Reorganization in a Brain Control Task , 2010, The Journal of Neuroscience.