Estimating the Optimal Threshold for Accuracy Assessment of the Global Ecosystem Dynamics Investigation (GEDI) Data in a Gentle Relief Urban Area

LiDAR is an excellent source of elevation data used in many surveys. The spaceborne handle system, Global Ecosystem Dynamics Investigation (GEDI), provides ground elevation information with high accuracy except for areas with steep slopes. GEDI data have a lot of noise from atmospheric conditions, and therefore filtering procedures are mandatory to select the best dataset. The dataset presents uncertainties of different magnitudes, with values reaching more than 100 m of difference between the reference data and the GEDI data. The challenge is to find a criterion to determine a threshold to filter accurate GEDI samples. This research aims to identify the threshold based on the difference values between the reference data and the GEDI data to select the maximum number of samples with low RMSE values. Therefore, we used the Kolmogorov–Smirnov (KS) non-parametric test to define the best threshold based on a normal distribution. Our results demonstrated a lower RMSE value with a high number of samples when compared with the quality flag parameter threshold, even using sensitivity parameter thresholds. This method is useful for achieving the best possible accuracy from GEDI data worldwide.

[1]  Herve B. Kashongwe,et al.  The impact of geolocation uncertainty on GEDI tropical forest canopy height estimation and change monitoring , 2021 .

[2]  Zhuoqi Chen,et al.  Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals , 2021 .

[3]  W. Ni,et al.  Assessment of Slope-Adaptive Metrics of GEDI Waveforms for Estimations of Forest Aboveground Biomass over Mountainous Areas , 2021, Journal of Remote Sensing.

[4]  E. Broadbent,et al.  Using high-density UAV-Lidar for deriving tree height of Araucaria Angustifolia in an Urban Atlantic Rain Forest , 2021 .

[5]  Mingyue Liu,et al.  Improved estimation of forest stand volume by the integration of GEDI LiDAR data and multi-sensor imagery in the Changbai Mountains Mixed forests Ecoregion (CMMFE), northeast China , 2021, Int. J. Appl. Earth Obs. Geoinformation.

[6]  Nguyen Thi Thuy Linh,et al.  Characterization of the 2014 Indus River Flood Using Hydraulic Simulations and Satellite Images , 2021, Remote. Sens..

[7]  Guido Paliaga,et al.  Coupling Historical Maps and LiDAR Data to Identify Man-Made Landforms in Urban Areas , 2021, ISPRS Int. J. Geo Inf..

[8]  Žiga Kokalj,et al.  Space lidar for archaeology? Reanalyzing GEDI data for detection of ancient Maya buildings , 2021 .

[9]  T. Rodrigues,et al.  Remote sensing of water transparency variability in the Ibitinga reservoir during COVID-19 lockdown , 2021, Remote Sensing Applications: Society and Environment.

[10]  A. J. Luiz,et al.  APPLICATION OF THE KOLMOGOROV-SMIRNOV TEST TO COMPARE GREENHOUSE GAS EMISSIONS OVER TIME , 2021, REVISTA BRASILEIRA DE BIOMETRIA.

[11]  A. Pacheco,et al.  Avaliação de incêndio em ambiente de Caatinga a partir de imagens Landsat-8, índice de vegetação realçado e análise por componentes principais , 2021 .

[12]  J. Xia,et al.  Application of LiDAR UAV for High-Resolution Flood Modelling , 2021, Water Resources Management.

[13]  Hans-Erik Andersen,et al.  Estimating Net Primary Productivity (NPP) and Debris-Fall in Forests Using Lidar Time Series , 2021, Remote. Sens..

[14]  J. Guerra-Hernández,et al.  Using GEDI lidar data and airborne laser scanning to assess height growth dynamics in fast-growing species: a showcase in Spain , 2021 .

[15]  Chengquan Huang,et al.  Monitoring Key Forest Structure Attributes across the Conterminous United States by Integrating GEDI LiDAR Measurements and VIIRS Data , 2021, Remote. Sens..

[16]  Pablo Rodríguez-Gonzálvez,et al.  Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests , 2021, Remote. Sens..

[17]  Ben Spracklen,et al.  Determination of Structural Characteristics of Old-Growth Forest in Ukraine Using Spaceborne LiDAR , 2021, Remote. Sens..

[18]  László Pásztor,et al.  Cropmarks in Aerial Archaeology: New Lessons from an Old Story , 2021, Remote. Sens..

[19]  H. Aghamohammadi,et al.  Land cover mapping of urban environments using multispectral LiDAR data under data imbalance , 2021 .

[20]  Clémence Dubois,et al.  Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters , 2020, Remote. Sens..

[21]  Chen Zhang,et al.  Sub-Canopy Topography Estimation from TanDEM-X DEM by Fusing ALOS-2 PARSAR-2 InSAR Coherence and GEDI Data , 2020, Sensors.

[22]  B. Brisco,et al.  Smart solutions for smart cities: Urban wetland mapping using very-high resolution satellite imagery and airborne LiDAR data in the City of St. John's, NL, Canada. , 2020, Journal of environmental management.

[23]  M. Hansen,et al.  Mapping global forest canopy height through integration of GEDI and Landsat data , 2020 .

[24]  Frédéric Frappart,et al.  Analysis of GEDI Elevation Data Accuracy for Inland Waterbodies Altimetry , 2020, Remote. Sens..

[25]  Scott J. Goetz,et al.  The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography , 2020, Science of Remote Sensing.

[26]  Kateřina Gdulová,et al.  Accuracy assessment of the global TanDEM-X digital elevation model in a mountain environment , 2020 .

[27]  Keith Krause,et al.  Detecting Change in Forest Structure with Simulated GEDI Lidar Waveforms: A Case Study of the Hemlock Woolly Adelgid (HWA; Adelges tsugae) Infestation , 2020, Remote. Sens..

[28]  Regiane Dalazoana,et al.  Comparação entre abordagens absoluta e relativa em determinações altimétricas baseadas em observações GNSS e Modelos Globais do Geopotencial , 2018 .

[29]  Michael E. Schaepman,et al.  Determination of grassland use intensity based on multi-temporal remote sensing data and ecological indicators , 2017 .

[30]  E. G. Parmehr,et al.  Estimation of urban tree canopy cover using random point sampling and remote sensing methods , 2016 .

[31]  A. S. Toprak,et al.  An investigation of DEM generation process based on LiDAR data filtering, decimation, and interpolation methods for an urban area , 2015 .

[32]  Mohsen Azadbakht,et al.  Separability of targets in urban areas using features from full-waveform LiDARA data , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[33]  Wai Yeung Yan,et al.  Urban land cover classification using airborne LiDAR data: A review , 2015 .

[34]  Clive S. Fraser,et al.  Automatic Segmentation of Raw LIDAR Data for Extraction of Building Roofs , 2014, Remote. Sens..

[35]  Ziyue Chen,et al.  Upward-fusion urban DTM generating method using airborne Lidar data , 2012 .

[36]  P. Zandbergen Characterizing the error distribution of lidar elevation data for North Carolina , 2011 .

[37]  Y. B. Wah,et al.  Power comparisons of Shapiro-Wilk , Kolmogorov-Smirnov , Lilliefors and Anderson-Darling tests , 2011 .

[38]  J.,et al.  Accuracy assessment of lidar‐derived digital elevation models , 2008 .

[39]  K. Becek INVESTIGATION OF ELEVATION BIAS OF THE SRTM C- AND X-BAND DIGITAL ELEVATION MODELS , 2008 .

[40]  P. Farrell,et al.  Comprehensive study of tests for normality and symmetry: extending the Spiegelhalter test , 2006 .

[41]  Tapani Sarjakoski,et al.  Uncovering the statistical and spatial characteristics of fine toposcale DEM error , 2006, Int. J. Geogr. Inf. Sci..

[42]  Olivier Bonin,et al.  Digital Terrain Model Computation from Contour Lines: How to Derive Quality Information from Artifact Analysis , 2005, GeoInformatica.

[43]  Carlos López,et al.  Improving the Elevation Accuracy of Digital Elevation Models: A Comparison of Some Error Detection Procedures , 2000, Trans. GIS.

[44]  Victor E. DeBrunner,et al.  Texture-based segmentation of satellite weather imagery , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).