About Adaptive Coding on Countable Alphabets: Max-Stable Envelope Classes
暂无分享,去创建一个
[1] S. Boucheron,et al. Concentration inequalities for order statistics , 2012, 1207.7209.
[2] P. Bickel. Efficient and Adaptive Estimation for Semiparametric Models , 1993 .
[3] Glen G. Langdon,et al. Arithmetic Coding , 1979 .
[4] Gaps in Discrete Random Samples , 2009, Journal of Applied Probability.
[5] Jorma Rissanen,et al. The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.
[6] Gábor Lugosi,et al. Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.
[7] Xin-She Yang,et al. Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.
[8] D. Haussler,et al. MUTUAL INFORMATION, METRIC ENTROPY AND CUMULATIVE RELATIVE ENTROPY RISK , 1997 .
[9] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[10] S. Resnick. Extreme Values, Regular Variation, and Point Processes , 1987 .
[11] E. J. Gumbel,et al. Statistics of Extremes. , 1960 .
[12] Eugene Seneta,et al. Slowly varying functions and asymptotic relations , 1971 .
[13] Alon Orlitsky,et al. Speaking of infinity [i.i.d. strings] , 2004, IEEE Transactions on Information Theory.
[14] A. Barron,et al. Jeffreys' prior is asymptotically least favorable under entropy risk , 1994 .
[15] Meir Feder,et al. Bounded Expected Delay in Arithmetic Coding , 2006, 2006 IEEE International Symposium on Information Theory.
[16] Neri Merhav,et al. Universal Prediction , 1998, IEEE Trans. Inf. Theory.
[17] S. Karlin. Central Limit Theorems for Certain Infinite Urn Schemes , 1967 .
[18] Philippe Jacquet,et al. Asymptotic Behavior of the Lempel-Ziv Parsing Scheme and Digital Search Trees , 1995, Theor. Comput. Sci..
[19] Philippe Jacquet,et al. Average Profile of the Lempel-Ziv Parsing Scheme for a Markovian Source , 2001, Algorithmica.
[20] J. Pitman,et al. Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws ∗ , 2007, math/0701718.
[21] J. Hüsler,et al. Laws of Small Numbers: Extremes and Rare Events , 1994 .
[22] Gassiat Élisabeth,et al. Codage universel et identification d'ordre par sélection de modèles , 2014 .
[23] Andrew R. Barron,et al. Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.
[24] Andrew R. Barron,et al. Asymptotic minimax regret for data compression, gambling, and prediction , 1997, IEEE Trans. Inf. Theory.
[25] O. Lepskii. Asymptotically Minimax Adaptive Estimation. I: Upper Bounds. Optimally Adaptive Estimates , 1992 .
[26] Vahid Tarokh,et al. Existence of optimal prefix codes for infinite source alphabets , 1997, IEEE Trans. Inf. Theory.
[27] L. Haan,et al. Extreme value theory , 2006 .
[28] P. Massart,et al. Risk bounds for model selection via penalization , 1999 .
[29] W. F. Trench,et al. Introduction to Real Analysis: An Educational Approach , 2009 .
[30] László Györfi,et al. On Universal Noiseless Source Coding for Infinite Source Alphabets , 1993, Eur. Trans. Telecommun..
[31] Olga Korosteleva,et al. Mathematical Statistics: Asymptotic Minimax Theory , 2011 .
[32] Peter Elias,et al. Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.
[33] Olivier Catoni,et al. Statistical learning theory and stochastic optimization , 2004 .
[34] Aurélien Garivier,et al. Coding on Countably Infinite Alphabets , 2008, IEEE Transactions on Information Theory.
[35] Wojciech Szpankowski,et al. Average Case Analysis of Algorithms on Sequences: Szpankowski/Average , 2001 .
[36] W. Szpankowski. Average Case Analysis of Algorithms on Sequences , 2001 .
[37] Andrew R. Barron,et al. Minimax redundancy for the class of memoryless sources , 1997, IEEE Trans. Inf. Theory.
[38] Arnold Knopfmacher,et al. The number of distinct values in a geometrically distributed sample , 2006, Eur. J. Comb..
[39] M. Meerschaert. Regular Variation in R k , 1988 .
[40] A. Tsybakov,et al. Introduction à l'estimation non-paramétrique , 2003 .
[41] Alon Orlitsky,et al. Poissonization and universal compression of envelope classes , 2014, 2014 IEEE International Symposium on Information Theory.
[42] Dean P. Foster,et al. Universal codes for finite sequences of integers drawn from a monotone distribution , 2002, IEEE Trans. Inf. Theory.
[43] Munther A. Dahleh,et al. Rare Probability Estimation under Regularly Varying Heavy Tails , 2012, COLT.
[44] Aurélien Garivier. A Lower-Bound for the Maximin Redundancy in Pattern Coding , 2009, Entropy.
[45] Munther A. Dahleh,et al. Large alphabets: Finite, infinite, and scaling models , 2012, 2012 46th Annual Conference on Information Sciences and Systems (CISS).
[46] Stéphane Boucheron,et al. About Adaptive Coding on Countable Alphabets , 2012, IEEE Transactions on Information Theory.
[47] Boris Ryabko. Twice-universal coding , 2015 .
[48] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[49] Dominique Bontemps. Universal Coding on Infinite Alphabets: Exponentially Decreasing Envelopes , 2011, IEEE Transactions on Information Theory.
[50] Wojciech Szpankowski,et al. Minimax Pointwise Redundancy for Memoryless Models Over Large Alphabets , 2012, IEEE Transactions on Information Theory.
[51] Alon Orlitsky,et al. Universal Compression of Envelope Classes: Tight Characterization via Poisson Sampling , 2014, ArXiv.
[52] Arlene K. H. Kim,et al. Adaptive and minimax optimal estimation of the tail coefficient , 2013, 1309.2585.
[53] A. Barron,et al. LARGE ALPHABET CODING AND PREDICTION THROUGH POISSONIZATION AND TILTING , 2013 .
[54] S. Hubbert. Extreme Value Theory , 2019, Handbook of Heavy-Tailed Distributions in Asset Management and Risk Management.
[55] Nicole A. Lazar,et al. Statistics of Extremes: Theory and Applications , 2005, Technometrics.
[56] Jaakko Astola,et al. Adaptive Coding and Prediction of Sources With Large and Infinite Alphabets , 2004, IEEE Transactions on Information Theory.
[57] László Györfi,et al. There is no universal source code for an infinite source alphabet , 1994, IEEE Trans. Inf. Theory.
[58] Jorma Rissanen,et al. Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.
[59] Frans M. J. Willems,et al. The Context-Tree Weighting Method : Extensions , 1998, IEEE Trans. Inf. Theory.
[60] Guy Louchard,et al. Average redundancy rate of the Lempel-Ziv code , 1996, Proceedings of Data Compression Conference - DCC '96.
[61] Thomas H. Cormen,et al. Introduction to algorithms [2nd ed.] , 2001 .
[62] J. Teugels,et al. Statistics of Extremes , 2004 .
[63] John C. Kieffer,et al. A unified approach to weak universal source coding , 1978, IEEE Trans. Inf. Theory.
[64] Raphail E. Krichevsky,et al. The performance of universal encoding , 1981, IEEE Trans. Inf. Theory.
[65] Serap A. Savari,et al. Redundancy of the Lempel-Ziv incremental parsing rule , 1997, IEEE Trans. Inf. Theory.
[66] Mesrob I. Ohannessian,et al. Concentration inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications , 2014, 1412.8652.
[67] K. Do,et al. Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .
[68] S. Boucheron,et al. Tail index estimation, concentration and adaptivity , 2015, 1503.05077.
[69] Andrew R. Barron,et al. Large Alphabet Compression and Predictive Distributions through Poissonization and Tilting , 2014, ArXiv.