Adventures in Pattern Formation: Spatially Periodic Forcing and Self-Organization

National Science Foundation, Cornell IGERT Nonlinear Science Program, Cornell NanoScale Facility, Cornell Nanobiotechnology Center

[1]  David A. Weitz,et al.  Visualizing dislocation nucleation by indenting colloidal crystals , 2006, Nature.

[2]  Kenneth Showalter,et al.  Control of waves, patterns and turbulence in chemical systems , 2006 .

[3]  D. G. Míguez,et al.  Turing instability controlled by spatiotemporal imposed dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  A. Zhabotinsky,et al.  Dynamic mechanism of photochemical induction of turing superlattices in the chlorine dioxide-iodine-malonic acid reaction-diffusion system. , 2005, The journal of physical chemistry. A.

[5]  I. V. Barashenkov,et al.  Two-dimensional solitons on the surface of magnetic fluids. , 2005, Physical review letters.

[6]  W. Zimmermann,et al.  Traveling–stripe forcing of oblique rolls in anisotropic systems , 2004 .

[7]  L. Kramer,et al.  Travelling-stripe forcing of Turing patterns , 2004 .

[8]  W. Zimmermann,et al.  Stripe-hexagon competition in forced pattern-forming systems with broken up-down symmetry. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  A. Zhabotinsky,et al.  Turing pattern formation in a two-layer system: superposition and superlattice patterns. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  L. Kramer,et al.  Traveling-stripe forcing generates hexagonal patterns. , 2004, Physical Review Letters.

[11]  Anna L. Lin,et al.  Resonance tongues and patterns in periodically forced reaction-diffusion systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  J. Burguete,et al.  Entrainment of a spatially extended nonlinear structure under selective forcing. , 2003, Physical review letters.

[13]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[14]  R. Neubecker,et al.  Spatial synchronization of regular optical patterns. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  M. Dolnik,et al.  Spatial Periodic Perturbation of Turing Pattern Development Using a Striped Mask , 2003 .

[16]  J. Casademunt,et al.  Dynamics of Turing patterns under spatiotemporal forcing. , 2003, Physical Review Letters.

[17]  G. Blatter,et al.  Commensurate-incommensurate transition of cold atoms in an optical lattice. , 2002, Physical review letters.

[18]  D. Cannell,et al.  Physical optics treatment of the shadowgraph , 2002 .

[19]  D. Semwogerere,et al.  Evolution of hexagonal patterns from controlled initial conditions in a Bénard-Marangoni convection experiment. , 2002, Physical review letters.

[20]  A. Zhabotinsky,et al.  Spatial periodic forcing of Turing structures. , 2001, Physical review letters.

[21]  George M. Whitesides,et al.  Competition of intrinsic and topographically imposed patterns in Bénard–Marangoni convection , 2001 .

[22]  Eberhard Bodenschatz,et al.  Defect turbulence in inclined layer convection. , 2001, Physical review letters.

[23]  W. Stahel,et al.  Log-normal Distributions across the Sciences: Keys and Clues , 2001 .

[24]  E. Bodenschatz,et al.  Dislocation dynamics in Rayleigh-Bénard convection. , 2001, Chaos.

[25]  Carey,et al.  Resonant phase patterns in a reaction-diffusion system , 2000, Physical review letters.

[26]  Ilarion V. Melnikov,et al.  Mechanisms of extensive spatiotemporal chaos in Rayleigh–Bénard convection , 2000, Nature.

[27]  Swinney,et al.  Draft Draft Draft Draft Draft Draft Draft Four-phase Patterns in Forced Oscillatory Systems Ii the Periodically Forced Belousov-zhabotinsky Reaction , 2022 .

[28]  Daniels,et al.  Pattern formation in inclined layer convection , 1999, Physical review letters.

[29]  Alwyn C. Scott,et al.  Nonlinear Science: Emergence and Dynamics of Coherent Structures , 1999 .

[30]  Goldenfeld,et al.  Simple lessons from complexity , 1999, Science.

[31]  Philip Ball,et al.  The Self-Made Tapestry: Pattern Formation in Nature , 1999 .

[32]  A. Hartmaier,et al.  Controlling factors for the brittle-to-ductile transition in tungsten single crystals , 1998, Science.

[33]  Hermann Riecke,et al.  Oscillon-type structures and their interaction in a Swift-Hohenberg model , 1998, patt-sol/9804005.

[34]  Eberhard Bodenschatz,et al.  Importance of Local Pattern Properties in Spiral Defect Chaos , 1998 .

[35]  G. Pereira,et al.  DIBLOCK COPOLYMER THIN FILMS ON HETEROGENEOUS STRIPED SURFACES : COMMENSURATE, INCOMMENSURATE AND INVERTED LAMELLAE , 1998 .

[36]  Y. Astrov,et al.  FORMATION OF CLUSTERS OF LOCALIZED STATES IN A GAS DISCHARGE SYSTEM VIA A SELF-COMPLETION SCENARIO , 1997 .

[37]  Valery Petrov,et al.  Resonant pattern formation in achemical system , 1997, Nature.

[38]  W. Zimmermann,et al.  Orientational oscillations of stripe patterns induced by frustrated drifts , 1997 .

[39]  Schmitz,et al.  Spatially periodic modulated Rayleigh-Bénard convection. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  G. Ahlers,et al.  Apparatus for the study of Rayleigh–Bénard convection in gases under pressure , 1996 .

[41]  J. Fineberg,et al.  Dissipative solitary states in driven surface waves. , 1996, Physical review letters.

[42]  Schmitz,et al.  Hopf bifurcation by frustrated drifts. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  K. Kawasaki,et al.  Forced Periodic and Quasi-Periodic Patterns in Anisotropic Systems , 1996 .

[44]  K. Kawasaki,et al.  Wavelength Competition in Convective Systems , 1993 .

[45]  Kramer,et al.  Temporal forcing of small-amplitude waves in anisotropic systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[47]  Steinberg,et al.  Rayleigh-Bénard convection near the gas-liquid critical point. , 1993, Physical review letters.

[48]  Morris,et al.  Spiral defect chaos in large aspect ratio Rayleigh-Bénard convection. , 1993, Physical review letters.

[49]  Gunton,et al.  Spiral-pattern formation in Rayleigh-Bénard convection. , 1992, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  D. Walgraef Temporal forcing of wave patterns , 1991 .

[51]  Gil,et al.  Hopf bifurcation in a broken-parity pattern. , 1991, Physical Review Letters.

[52]  Busse,et al.  Time-dependent convection induced by broken spatial symmetries. , 1991, Physical review letters.

[53]  Bhattacharjee Parametric resonance in Rayleigh-Bénard convection with corrugated geometry. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[54]  P. Coullet,et al.  Spatial forcing of 2D wave patterns , 1989 .

[55]  I. Rehberg,et al.  The shadowgraph method in convection experiments , 1989 .

[56]  John J. Tyson,et al.  When Time Breaks Down: The Three‐Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias , 1988 .

[57]  Steinberg,et al.  Temporal modulation of traveling waves. , 1988, Physical review letters.

[58]  D. Walgraef External forcing of spatio-temporal patterns , 1988 .

[59]  Knobloch,et al.  Time-modulated oscillatory convection. , 1988, Physical review letters.

[60]  M. Plischke,et al.  Equilibrium statistical physics , 1988 .

[61]  Swift,et al.  Pattern competition in temporally modulated Rayleigh-Bénard convection. , 1988, Physical review letters.

[62]  Pismen Bifurcation of quasiperiodic and nonstationary patterns under external forcing. , 1987, Physical review letters.

[63]  Donnelly,et al.  External modulation of Rayleigh-Bénard convection. , 1987, Physical review letters.

[64]  Swift,et al.  Hexagons and rolls in periodically modulated Rayleigh-Bénard convection. , 1987, Physical review. A, General physics.

[65]  E. Curado,et al.  Effects of an almost resonant spatial thermal modulation in the Rayleigh-Bénard problem: quasiperiodic behaviour , 1987 .

[66]  P. Coullet,et al.  Strong Resonances of Periodic Patterns , 1987 .

[67]  P. Coullet,et al.  Resonance and phase solitons in spatially-forced thermal convection , 1986 .

[68]  J. Gollub,et al.  Convective flows with multiple spatial periodicities , 1986, Journal of Fluid Mechanics.

[69]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[70]  C. Elphick Space-periodically driven codimension-two bifurcations , 1986 .

[71]  Coullet Commensurate-incommensurate transition in nonequilibrium systems. , 1986, Physical review letters.

[72]  Ahlers,et al.  Thermal convection under external modulation of the driving force. II. Experiments. , 1985, Physical review. A, General physics.

[73]  Ahlers,et al.  Thermal convection under external modulation of the driving force. I. The Lorenz model. , 1985, Physical review. A, General physics.

[74]  Le Gal P,et al.  Turbulence in a cylindrical container of argon near threshold of convection. , 1985, Physical review letters.

[75]  Lowe,et al.  Solitons and the commensurate-incommensurate transition in a convecting nematic fluid. , 1985, Physical review. A, General physics.

[76]  P. Hohenberg,et al.  Externally modulated Rayleigh-Bénard convection: experiment and theory , 1984 .

[77]  Tom C. Lubensky,et al.  Commensurate and Incommensurate Structures in a Nonequilibrium System , 1983 .

[78]  F. Busse,et al.  Non-linear properties of thermal convection , 1978 .

[79]  D. Pal,et al.  Thermal convection with spatially periodic boundary conditions: resonant wavelength excitation , 1978, Journal of Fluid Mechanics.

[80]  R. Behringer,et al.  Evolution of Turbulence from the Rayleigh-Bénard Instability , 1978 .

[81]  G. Ahlers,et al.  Low-Temperature Studies of the Rayieigh-Bénard Instability and Turbulence , 1974 .

[82]  P. Anderson More is different. , 1972, Science.

[83]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[84]  J. Whitehead,et al.  Instabilities of convection rolls in a high Prandtl number fluid , 1971, Journal of Fluid Mechanics.

[85]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[86]  J. Whitehead,et al.  Evolution of two-dimensional periodic Rayleigh convection cells of arbitrary wave-numbers , 1968, Journal of Fluid Mechanics.

[87]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[88]  F. Busse,et al.  On the stability of steady finite amplitude convection , 1965, Journal of Fluid Mechanics.

[89]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[90]  R. Donnelly,et al.  Experiments on the stability of viscous flow between rotating cylinders - VI. Finite-amplitude experiments , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[91]  R. Donnelly Experiments on the stability of viscous flow between rotating cylinders III. Enhancement of stability by modulation , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[92]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[93]  F. Reif,et al.  Enhancement of Hydrodynamic Stability by Modulation , 1962 .

[94]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[95]  G. Veronis,et al.  Finite amplitude cellular convection , 1958, Journal of Fluid Mechanics.

[96]  J. Bogdanoff,et al.  On the Theory of Dislocations , 1950 .

[97]  Richard Vynne Southwell,et al.  On maintained convective motion in a fluid heated from below , 1940, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[98]  G. Taylor Stability of a Viscous Liquid Contained between Two Rotating Cylinders , 1923 .

[99]  Mohamed A. Helal,et al.  Solitons, Introduction to , 2009, Encyclopedia of Complexity and Systems Science.

[100]  Yuri S. Kivshar,et al.  Localizing Energy Through Nonlinearity and Discreteness , 2004 .

[101]  Eberhard Bodenschatz,et al.  Recent Developments in Rayleigh-Bénard Convection , 2000 .

[102]  P. Umbanhowar,et al.  Localized excitations in a vertically vibrated granular layer , 1996, Nature.

[103]  Paul Manneville,et al.  Dissipative Structures and Weak Turbulence , 1995 .

[104]  G. Grüner,et al.  Density Waves In Solids , 1994 .

[105]  Alan C. Newell,et al.  ORDER PARAMETER EQUATIONS FOR PATTERNS , 1993 .

[106]  S. Rosenblat,et al.  Bénard convection with time‐periodic heating , 1984 .

[107]  D. Tritton,et al.  Physical Fluid Dynamics , 1977 .

[108]  Stephen H. Davis,et al.  The Stability of Time-Periodic Flows , 1976 .

[109]  R. Finucane,et al.  Onset of instability in a fluid layer heated sinusoidally from below , 1976 .

[110]  Henri Bénard,et al.  Les tourbillons cellulaires dans une nappe liquide. - Méthodes optiques d'observation et d'enregistrement , 1901 .