The future of non-planar nanoelectronics MOSFET devices: a review

This study was focused on the evaluation of present development of nanoelectronic devices and the projection of future devices, ultimately for non-planar geometry. The recent scaling of IC technology was limiting the employment of conventional, planar structure, thus implies in the wake of the research in non-classical architecture. The present status of extended planar silicon devices, including the insertion of high-k dielectric, metal gate and SOI MOSFET in the recent manufacturing process is elaborated. The alternative path in the enhancement of IC device performance, merely in the sub-50nm dimension is shown, with the role of double gate MOSFET and non-planar structure devices, including vertical FETs, is expected to take greater share, as well as several emerging nanostructures. The possibility to implement the non-planar devices generation heavily depends on the maturity of each technology and the ability to clear the obstacles in processing.

[1]  Ming-Fu Li,et al.  Metal gate work function engineering on gate leakage of MOSFETs , 2004, IEEE Transactions on Electron Devices.

[2]  P. Ashburn,et al.  Asymmetric gate-induced drain leakage and body leakage in vertical MOSFETs with reduced parasitic capacitance , 2006, IEEE Transactions on Electron Devices.

[3]  Jin-Woo Han,et al.  Multiple-Gate CMOS Thin-Film Transistor With Polysilicon Nanowire , 2008, IEEE Electron Device Letters.

[4]  Chih-Wen Liu,et al.  Electron mobility enhancement in strained-germanium n-channel metal-oxide-semiconductor field-effect transistors , 2007 .

[5]  U. Langmann,et al.  Planar and vertical double gate concepts , 2002 .

[6]  M. Marso,et al.  Vertical double-gate MOSFETs , 2004, The Fifth International Conference on Advanced Semiconductor Devices and Microsystems, 2004. ASDAM 2004..

[7]  Jean-Pierre Colinge,et al.  Multiple-gate SOI MOSFETs: device design guidelines , 2002 .

[8]  E.J. Nowak,et al.  Turning silicon on its edge [double gate CMOS/FinFET technology] , 2004, IEEE Circuits and Devices Magazine.

[9]  Steve Hall,et al.  Recent developments in deca-nanometer vertical MOSFETs , 2004 .

[10]  J. Bokor,et al.  Characterization of the ultrathin vertical channel CMOS technology , 2004, IEEE Transactions on Electron Devices.

[11]  O. Faynot,et al.  Multiple gate devices: advantages and challenges , 2005 .

[12]  Bryan M. Cord,et al.  Limiting factors in sub- 10 nm scanning-electron-beam lithography , 2009 .

[13]  P. Kapur,et al.  A Nanoscale Vertical Double-Gate Single-Transistor Capacitorless DRAM , 2008, IEEE Electron Device Letters.

[14]  Jing Guo,et al.  Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics , 2004 .

[15]  M. Bohr,et al.  A logic nanotechnology featuring strained-silicon , 2004, IEEE Electron Device Letters.

[16]  S. Dey,et al.  A novel 50 nm vertical MOSFET with a dielectric pocket , 2006 .

[17]  T. Nigam,et al.  The vertical replacement-gate (VRG) MOSFET , 2002 .

[18]  Krishna C. Saraswat,et al.  A Low Power, Highly Scalable, Vertical Double Gate MOSFET Using Novel Processes , 2007, DRC 2007.

[19]  T. Grabolla,et al.  Selectively grown vertical Si-p MOS transistor with short channel lengths , 1996 .

[20]  Yuanlie Yu,et al.  The synthesis of aligned silicon nanowires under ambient atmospheric pressure , 2009 .

[21]  J.M.C. Stork,et al.  The impact of high-/spl kappa/ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs , 1999 .

[22]  Burn Jeng Lin Optical lithography—present and future challenges , 2006 .

[23]  Sorin Cristoloveanu,et al.  Frontiers of silicon-on-insulator , 2003 .

[24]  J. Moers Turning the world vertical: MOSFETs with current flow perpendicular to the wafer surface , 2007 .

[25]  H. Wong,et al.  CMOS scaling into the nanometer regime , 1997, Proc. IEEE.

[26]  Sorin Cristoloveanu,et al.  Narrow-channel effects and their impact on the static and floating-body characteristics of STI- and LOCOS-isolated SOI MOSFETs , 2002 .

[27]  E. Suzuki,et al.  Demonstration, analysis, and device design considerations for independent DG MOSFETs , 2005, IEEE Transactions on Electron Devices.

[28]  P. Ashburn,et al.  Shallow junctions on pillar sidewalls for sub-100-nm vertical MOSFETs , 2006, IEEE Electron Device Letters.

[29]  Steve Hall,et al.  Single, double and surround gate vertical MOSFETs with reduced parasitic capacitance , 2004 .

[30]  Byung-Gook Park,et al.  Design optimization of gate-all-around (GAA) MOSFETs , 2006 .

[31]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[32]  J. Benedict,et al.  Two gates are better than one [double-gate MOSFET process] , 2003, IEEE Circuits and Devices Magazine.

[33]  Michael S. Shur,et al.  Analysis of the anomalous drain current characteristics of halo MOSFETs , 2003 .

[34]  D E Ioannou Scaling limits and reliability of SOI CMOS technology , 2005 .

[35]  Ismail Saad,et al.  Self-aligned vertical double-gate MOSFET (VDGM) with the oblique rotating ion implantation (ORI) method , 2008, Microelectron. J..

[36]  Sarah H. Olsen,et al.  Design, fabrication and characterisation of strained Si/SiGe MOS transistors , 2004 .

[37]  Meishoku Masahara,et al.  Vertical double-gate MOSFET device technology , 2008 .

[38]  Gordon E. Moore,et al.  Lithography and the future of Moore's law , 1995, Advanced Lithography.

[39]  P. Ashburn,et al.  Depletion-isolation effect in vertical MOSFETs during the transition from partial to fully depleted operation , 2006, IEEE Transactions on Electron Devices.

[40]  L. Risch,et al.  Vertical MOS Transistors with 70nm Channel Length , 1995, ESSDERC '95: Proceedings of the 25th European Solid State Device Research Conference.

[41]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[42]  张兴,et al.  Tradeoff between speed and static power dissipation of ultra-thin body SOI MOSFETs , 2007 .

[43]  Jean-Pierre Colinge,et al.  Multiple-gate SOI MOSFETs , 2004 .

[44]  A. Gnudi,et al.  Tight-binding and effective mass modeling of armchair graphene nanoribbon FETs , 2009 .

[45]  P. Ashburn,et al.  Design of 50-nm vertical MOSFET incorporating a dielectric pocket , 2004, IEEE Transactions on Electron Devices.

[46]  Chenming Hu,et al.  Dual work function metal gate CMOS technology using metal interdiffusion , 2001, IEEE Electron Device Letters.

[47]  Walter Hansch,et al.  MBE-grown vertical power-MOSFETs with 100-nm channel length , 2000 .

[48]  Burn Jeng Lin,et al.  The ending of optical lithography and the prospects of its successors , 2006 .

[49]  L. Chang,et al.  Transistor Scaling to the Limit , 2009 .

[50]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[51]  L. J. McDaid,et al.  Reverse heterojunction engineering: a novel technique for the suppression of the parasitic bipolar transistor in deep sub-micron MOSFETs , 1995 .

[52]  E. Suzuki,et al.  Ultrathin channel vertical DG MOSFET fabricated by using ion-bombardment-retarded etching , 2004, IEEE Transactions on Electron Devices.

[53]  Hiroshi Iwai,et al.  CHALLENGES FOR FUTURE SEMICONDUCTOR MANUFACTURING , 2006 .

[54]  H.-S. Philip Wong,et al.  Beyond the conventional transistor , 2002, IBM J. Res. Dev..

[55]  Ismail Saad,et al.  Vertical Double Gate MOSFET For Nanoscale Device With Fully Depleted Feature , 2009 .

[56]  William F. Richardson,et al.  Sub-100-nm vertical MOSFET with threshold voltage adjustment , 2002 .

[57]  U. Langmann,et al.  Short-channel vertical sidewall MOSFETs , 2001 .