10Kin1day: A Bottom-Up Neuroimaging Initiative

We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain.

Julie M. Hall | T. V. van Erp | C. Montag | M. Reuter | S. Baron-Cohen | W. Cahn | R. Emsley | E. Crone | H. Walter | S. Lawrie | H. Whalley | M. P. van den Heuvel | D. Margulies | A. Villringer | M. Filippi | A. Jansen | A. McIntosh | L. Jäncke | S. D. de Lange | T. Kircher | S. Seedat | U. Dannlowski | M. Benders | L. H. van den Berg | F. Agosta | D. Tordesillas-Gutiérrez | N. V. van Haren | C. Mcdonald | J. Peper | B. Crespo-Facorro | R. Redlich | D. Grotegerd | C. Soriano-Mas | C. Arango | T. Frodl | S. Durston | L. H. Scholtens | L. Booij | N. Sousa | J. Kassubek | D. Cannon | G. Donohoe | J. Menchón | C. López-Jaramillo | M. Zanetti | L. Holleran | C. Vollmar | M. Serpa | Pedro G. P. Rosa | Hannelore K. van der Burgh | V. Kostic | I. Martínez-Zalacaín | S. D. de Zwarte | T. Lett | P. Najt | J. Repple | B. Dietsche | A. Krug | T. Chaim-Avancini | J. Janssen | P. Marques | P. Moreira | P. Morgado | B. Oranje | P. Rasser | U. Schall | S. Mérillat | H. Müller | S. Lewis | K. Narkiewicz | C. Vinkers | F. Liem | S. Skouras | M. Lombardo | A. Tomyshev | S. Markett | A. Ruigrok | B. Auyeung | R. Holt | V. Kaleda | K. Jodzio | A. Díaz-Zuluaga | L. Nabulsi | K. Braun | D. Gąsecki | M. Gorges | S. Valk | S. Meinert | S. Basaia | Edwin H M Lee | C. Alloza | C. Díaz-Caneja | S. Plessis | D. Mothersill | A. Witte | E. Szurowska | F. Beyer | Rui Zhang | A. Sabisz | P. Naumczyk | S. K. Masouleh | M. Koevoets | B. Graff | Geraldo Busatto Filho | L. Waller | I. Lebedeva | V. Ortiz-Garcia de la Foz | M. Witkowska | J. V. van Leeuwen | G. McPhilemy | H. Hopman | Sandra S. M. Chan | Eric Y. H. Chen | Julian A. Pineda

[1]  Peter F. Neher,et al.  The challenge of mapping the human connectome based on diffusion tractography , 2017, Nature Communications.

[2]  Anders M. Dale,et al.  ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide , 2017, NeuroImage.

[3]  Leonardo L. Gollo,et al.  Connectome sensitivity or specificity: which is more important? , 2016, NeuroImage.

[4]  Alexandre Pouget,et al.  A better way to crack the brain , 2016, Nature.

[5]  Peter F. Neher,et al.  Tractography-based connectomes are dominated by false-positive connections , 2016, bioRxiv.

[6]  Alois Knoll,et al.  The Human Brain Project: Creating a European Research Infrastructure to Decode the Human Brain , 2016, Neuron.

[7]  René S. Kahn,et al.  Associated Microscale Spine Density and Macroscale Connectivity Disruptions in Schizophrenia , 2016, Biological Psychiatry.

[8]  Tianzi Jiang,et al.  Brainnetome: A new -ome to understand the brain and its disorders , 2013, NeuroImage.

[9]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[10]  T. Insel,et al.  The NIH BRAIN Initiative , 2013, Science.

[11]  O. Sporns,et al.  High-cost, high-capacity backbone for global brain communication , 2012, Proceedings of the National Academy of Sciences.

[12]  Patric Hagmann,et al.  Mapping the human connectome at multiple scales with diffusion spectrum MRI , 2012, Journal of Neuroscience Methods.

[13]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[14]  R. Kahn,et al.  Aberrant Frontal and Temporal Complex Network Structure in Schizophrenia: A Graph Theoretical Analysis , 2010, The Journal of Neuroscience.

[15]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[16]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[17]  S. Mori,et al.  Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research , 2006, Neuron.

[18]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[19]  Derek K. Jones,et al.  RESTORE: Robust estimation of tensors by outlier rejection , 2005, Magnetic resonance in medicine.

[20]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[21]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[22]  James V. Stone,et al.  Spatiotemporal Independent Component Analysis of Event-Related fMRI Data Using Skewed Probability Density Functions , 2002, NeuroImage.

[23]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. Barker,et al.  Diffusion magnetic resonance imaging: Its principle and applications , 1999, The Anatomical record.

[25]  C. Beaulieu,et al.  Determinants of anisotropic water diffusion in nerves , 1994, Magnetic resonance in medicine.