Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer

[1]  A. Vitukhnovsky,et al.  Hybrid organic–inorganic light emitting diodes , 2016, Bulletin of the Russian Academy of Sciences: Physics.

[2]  Shinuk Cho,et al.  Amine‐Based Polar Solvent Treatment for Highly Efficient Inverted Polymer Solar Cells , 2014, Advanced materials.

[3]  Jin Young Kim,et al.  Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone. , 2013, ACS applied materials & interfaces.

[4]  Tobias D. Schmidt,et al.  Device efficiency of organic light‐emitting diodes: Progress by improved light outcoupling , 2013 .

[5]  D. Kabra,et al.  Barium Hydroxide as an Interlayer Between Zinc Oxide and a Luminescent Conjugated Polymer for Light‐Emitting Diodes , 2012 .

[6]  Nelson Tansu,et al.  Light Extraction of Organic Light Emitting Diodes by Defective Hexagonal‐Close‐Packed Array , 2012 .

[7]  Jin Young Kim,et al.  Highly efficient polymer light-emitting diodes using graphene oxide as a hole transport layer. , 2012, ACS nano.

[8]  Richard H. Friend,et al.  Triplet dynamics in fluorescent polymer light-emitting diodes , 2012 .

[9]  D. Kabra,et al.  Charge‐Carrier Balance and Color Purity in Polyfluorene Polymer Blends for Blue Light‐Emitting Diodes , 2012 .

[10]  Young Dok Kim,et al.  Spontaneous formation of nanoripples on the surface of ZnO thin films as hole-blocking layer of inverted organic solar cells , 2011 .

[11]  Siew Yee Lim,et al.  Measuring dopant concentrations in p-type silicon using iron-acceptor pairing monitored by band-to-band photoluminescence , 2011 .

[12]  Jin Young Kim,et al.  Combination of Titanium Oxide and a Conjugated Polyelectrolyte for High‐Performance Inverted‐Type Organic Optoelectronic Devices , 2011, Advanced materials.

[13]  A. Monkman,et al.  The contribution of triplet–triplet annihilation to the lifetime and efficiency of fluorescent polymer organic light emitting diodes , 2011 .

[14]  S. Kim,et al.  Surface modification of metal oxide using ionic liquid molecules in hybrid organic–inorganic optoelectronic devices , 2011 .

[15]  Sung-Yong Min,et al.  Highly efficient hybrid inorganic-organic light-emitting diodes by using air-stable metal oxides and a thick emitting layer. , 2010, ChemSusChem.

[16]  H. Snaith,et al.  Efficient Single‐Layer Polymer Light‐Emitting Diodes , 2010, Advanced materials.

[17]  S. Kim,et al.  Efficient hybrid organic-inorganic light emitting diodes with self-assembled dipole molecule deposited metal oxides , 2010 .

[18]  Soon Moon Jeong,et al.  Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles , 2010 .

[19]  Hisao Ishii,et al.  Origins of Improved Hole‐Injection Efficiency by the Deposition of MoO3 on the Polymeric Semiconductor Poly(dioctylfluorene‐alt‐benzothiadiazole) , 2009 .

[20]  Yang Yang,et al.  ZnO nano-ridge structure and its application in inverted polymer solar cell , 2009 .

[21]  Wolfgang Kowalsky,et al.  Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films , 2009 .

[22]  H. Snaith,et al.  Optically‐Pumped Lasing in Hybrid Organic–Inorganic Light‐Emitting Diodes , 2009 .

[23]  Gregor Schwartz,et al.  White organic light-emitting diodes with fluorescent tube efficiency , 2009, Nature.

[24]  Henk J. Bolink,et al.  Efficient Polymer Light‐Emitting Diode Using Air‐Stable Metal Oxides as Electrodes , 2009 .

[25]  H. Snaith,et al.  High Efficiency Composite Metal Oxide‐Polymer Electroluminescent Devices: A Morphological and Material Based Investigation , 2008 .

[26]  Stephen R. Forrest,et al.  Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids , 2008 .

[27]  Henk J. Bolink,et al.  Inverted solution processable OLEDs using a metal oxide as electron injection contact , 2008, SPIE Photonics Europe.

[28]  Soon Moon Jeong,et al.  Enhancement of normally directed light outcoupling from organic light-emitting diodes using nanoimprinted low-refractive-index layer , 2008 .

[29]  T. Asano,et al.  Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography , 2007 .

[30]  Katsuyuki Morii,et al.  Encapsulation-free hybrid organic-inorganic light-emitting diodes , 2006 .

[31]  T. Asano,et al.  Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers , 2005 .

[32]  Masayuki Fujita,et al.  Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods , 2005 .

[33]  Shanhui Fan,et al.  Extracting Light from Polymer Light‐Emitting Diodes Using Stamped Bragg Gratings , 2004 .

[34]  Louis E. Brus,et al.  Drying-mediated self-assembly of nanoparticles , 2003, Nature.

[35]  S. Ramasesha,et al.  Formation cross-sections of singlet and triplet excitons in π-conjugated polymers , 2001, Nature.

[36]  Ifor D. W. Samuel,et al.  Increased Efficiency and Controlled Light Output from a Microstructured Light-Emitting Diode , 2001 .

[37]  Conor F. Madigan,et al.  Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification , 2000 .

[38]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[39]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[40]  Donal D. C. Bradley,et al.  Angular Dependence of the Emission from a Conjugated Polymer Light‐Emitting Diode: Implications for efficiency calculations , 1994 .

[41]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[42]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .