Complex organic molecules in protoplanetary disks

Context. Protoplanetary disks are vital objects in star and planet formation, possessing all the material, gas and dust, which may form a planetary system orbiting the new star. Small, simple molecules have traditionally been detected in protoplanetary disks; however, in the ALMA era, we expect the molecular inventory of protoplanetary disks to significantly increase. Aims. We investigate the synthesis of complex organic molecules (COMs) in protoplanetary disks to put constraints on the achievable chemical complexity and to predict species and transitions which may be observable with ALMA. Methods. We have coupled a 2D steady-state physical model of a protoplanetary disk around a typical T Tauri star with a large gas-grain chemical network including COMs. We compare the resulting column densities with those derived from observations and perform ray-tracing calculations to predict line spectra. We compare the synthesised line intensities with current observations and determine those COMs which may be observable in nearby objects. We also compare the predicted grain-surface abundances with those derived from cometary comae observations. Results. We find COMs are efficiently formed in the disk midplane via grain-surface chemical reactions, reaching peak grain-surface fractional abundances ~10-6–10-4 that of the H nuclei number density. COMs formed on grain surfaces are returned to the gas phase via non-thermal desorption; however, gas-phase species reach lower fractional abundances than their grain-surface equivalents, ~10-12–10-7. Including the irradiation of grain mantle material helps build further complexity in the ice through the replenishment of grain-surface radicals which take part in further grain-surface reactions. There is reasonable agreement with several line transitions of H2CO observed towards T Tauri star-disk systems. There is poor agreement with HC3N lines observed towards LkCa 15 and GO Tau and we discuss possible explanations for these discrepancies. The synthesised line intensities for CH3OH are consistent with upper limits determined towards all sources. Our models suggest CH3OH should be readily observable in nearby protoplanetary disks with ALMA; however, detection of more complex species may prove challenging, even with ALMA “Full Science” capabilities. Our grain-surface abundances are consistent with those derived from cometary comae observations providing additional evidence for the hypothesis that comets (and other planetesimals) formed via the coagulation of icy grains in the Sun’s natal disk.

[1]  H. Nomura Formation Process of Complex Organic Molecules in Protoplanetary Disks , 2014 .

[2]  E. Bergin,et al.  Imaging of the CO Snow Line in a Solar Nebula Analog , 2013, Science.

[3]  L. Testi,et al.  ALMA imaging of the CO snowline of the HD 163296 disk with DCO , 2013, 1307.3420.

[4]  E. Herbst,et al.  REACTIVE DESORPTION AND RADIATIVE ASSOCIATION AS POSSIBLE DRIVERS OF COMPLEX MOLECULE FORMATION IN THE COLD INTERSTELLAR MEDIUM , 2013, 1303.7266.

[5]  K. Wada,et al.  Static compression of porous dust aggregates , 2013, 1303.3351.

[6]  S. Cazaux,et al.  How micron-sized dust particles determine the chemistry of our Universe , 2013, Scientific Reports.

[7]  K. Pontoppidan,et al.  ANOMALOUS CO2 ICE TOWARD HOPS-68: A TRACER OF PROTOSTELLAR FEEDBACK , 2013, 1302.3883.

[8]  T. Henning,et al.  PROTOPLANETARY DISK STRUCTURE WITH GRAIN EVOLUTION: THE ANDES MODEL , 2013, 1302.1403.

[9]  R. Garrod A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE , 2013, 1302.0688.

[10]  T. Henning,et al.  An old disk still capable of forming a planetary system , 2013, Nature.

[11]  D. Wilner,et al.  H2CO AND N2H+ IN PROTOPLANETARY DISKS: EVIDENCE FOR A CO-ICE REGULATED CHEMISTRY , 2013, 1301.2465.

[12]  A. Tielens,et al.  Exploring organic chemistry in planet-forming zones , 2012, 1212.3297.

[13]  E. Herbst,et al.  A UNIFIED MONTE CARLO TREATMENT OF GAS–GRAIN CHEMISTRY FOR LARGE REACTION NETWORKS. II. A MULTIPHASE GAS-SURFACE-LAYERED BULK MODEL , 2012, 1211.3025.

[14]  M. Gerin,et al.  DISCOVERY OF THE METHOXY RADICAL, CH3O, TOWARD B1: DUST GRAIN AND GAS-PHASE CHEMISTRY IN COLD DARK CLOUDS , 2012 .

[15]  J. Jørgensen,et al.  DETECTION OF THE SIMPLEST SUGAR, GLYCOLALDEHYDE, IN A SOLAR-TYPE PROTOSTAR WITH ALMA , 2012, 1208.5498.

[16]  V. Wakelam,et al.  ERRATUM: “A NEW NETWORK FOR HIGHER-TEMPERATURE GAS-PHASE CHEMISTRY. I. A PRELIMINARY STUDY OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI” (2010, ApJ, 721, 1570) , 2012 .

[17]  C. Dullemond,et al.  KINEMATICS OF THE CO GAS IN THE INNER REGIONS OF THE TW Hya DISK , 2012, 1208.1285.

[18]  T. Henning,et al.  Warm H2O and OH in the disk around the Herbig star HD 163296 , 2012, 1207.3969.

[19]  T. Henning,et al.  CHEMISTRY IN DISKS. VII. FIRST DETECTION OF HC3N IN PROTOPLANETARY DISKS , 2012, 1207.2682.

[20]  M. Bertin,et al.  UV photodesorption of interstellar CO ice analogues: from subsurface excitation to surface desorption. , 2012, Physical chemistry chemical physics : PCCP.

[21]  G. Micela,et al.  SOFT X-RAY IRRADIATION OF H2S ICE AND THE PRESENCE OF S2 IN COMETS , 2012 .

[22]  C. Ceccarelli,et al.  Detection of complex organic molecules in a prestellar core: a new challenge for astrochemical models , 2012 .

[23]  D. Wilner,et al.  EVIDENCE FOR MULTIPLE PATHWAYS TO DEUTERIUM ENHANCEMENTS IN PROTOPLANETARY DISKS , 2012, 1202.3992.

[24]  A. Collura,et al.  SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES , 2012 .

[25]  T. Millar,et al.  CHEMICAL PROCESSES IN PROTOPLANETARY DISKS. II. ON THE IMPORTANCE OF PHOTOCHEMISTRY AND X-RAY IONIZATION , 2012, 1201.2613.

[26]  G. Blake,et al.  FIRST DETECTION OF NEAR-INFRARED LINE EMISSION FROM ORGANICS IN YOUNG CIRCUMSTELLAR DISKS , 2012, 1201.0766.

[27]  Jonathan P. Williams,et al.  THE TW Hya DISK AT 870 μm: COMPARISON OF CO AND DUST RADIAL STRUCTURES , 2011, 1111.5037.

[28]  John C. Pearson,et al.  Detection of the Water Reservoir in a Forming Planetary System , 2011, Science.

[29]  M. Ireland,et al.  LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION? , 2011, 1110.3808.

[30]  U. Michigan,et al.  The chemical history of molecules in circumstellar disks - II. Gas-phase species , 2011, 1109.1741.

[31]  Steven B. Charnley,et al.  The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage , 2011 .

[32]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[33]  R. Garrod,et al.  ON THE FORMATION OF CO2 AND OTHER INTERSTELLAR ICES , 2011, 1106.0540.

[34]  D. Wilner,et al.  RESOLVING THE CO SNOW LINE IN THE DISK AROUND HD 163296 , 2011, 1107.5061.

[35]  D. Semenov,et al.  CHEMICAL EVOLUTION OF TURBULENT PROTOPLANETARY DISKS AND THE SOLAR NEBULA , 2011, 1104.4358.

[36]  F. Ménard,et al.  Detection of CH+ emission from the disc around HD 100546 , 2011, 1104.2283.

[37]  E. Bergin,et al.  DISK IMAGING SURVEY OF CHEMISTRY WITH SMA. II. SOUTHERN SKY PROTOPLANETARY DISK DATA AND FULL SAMPLE STATISTICS , 2011, 1104.1236.

[38]  Supa,et al.  CO2 FORMATION IN QUIESCENT CLOUDS: AN EXPERIMENTAL STUDY OF THE CO + OH PATHWAY , 2011, 1104.0031.

[39]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[40]  Dominikus Heinzeller,et al.  CHEMICAL EVOLUTION OF PROTOPLANETARY DISKS—THE EFFECTS OF VISCOUS ACCRETION, TURBULENT MIXING, AND DISK WINDS , 2011, 1102.3972.

[41]  R. Garrod,et al.  CONTRIBUTIONS FROM GRAIN SURFACE AND GAS PHASE CHEMISTRY TO THE FORMATION OF METHYL FORMATE AND ITS STRUCTURAL ISOMERS , 2011 .

[42]  M. Kawasaki,et al.  LABORATORY STUDIES ON THE FORMATION OF FORMIC ACID (HCOOH) IN INTERSTELLAR AND COMETARY ICES , 2011 .

[43]  M. Rocco,et al.  X-ray photodesorption from methanol ice , 2010 .

[44]  T. O. S. University,et al.  IMPACT OF GRAIN EVOLUTION ON THE CHEMICAL STRUCTURE OF PROTOPLANETARY DISKS , 2010, 1011.4420.

[45]  D. Wilner,et al.  EMPIRICAL CONSTRAINTS ON TURBULENCE IN PROTOPLANETARY ACCRETION DISKS , 2010, 1011.3826.

[46]  N. Calvet,et al.  CHEMISTRY OF A PROTOPLANETARY DISK WITH GRAIN SETTLING AND Lyα RADIATION , 2010, 1011.0446.

[47]  O. Berné,et al.  Molecular content of the circumstellar disk in AB Aurigae - First detection of SO in a circumstellar disk , 2010, 1009.5597.

[48]  V. Wakelam,et al.  A NEW NETWORK FOR HIGHER-TEMPERATURE GAS-PHASE CHEMISTRY. I. A PRELIMINARY STUDY OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI , 2010 .

[49]  T. Millar,et al.  CHEMICAL PROCESSES IN PROTOPLANETARY DISKS , 2010, 1008.4305.

[50]  D. Wilner,et al.  IMAGING THE MOLECULAR DISK ORBITING THE TWIN YOUNG SUNS OF V4046 Sgr , 2010, 1007.3993.

[51]  T. Henning,et al.  Chemistry in Disks. IV. Benchmarking gas-grain chemical models with surface reactions , 2010, 1007.2302.

[52]  T. V. van Kempen,et al.  THE DISK IMAGING SURVEY OF CHEMISTRY WITH SMA. I. TAURUS PROTOPLANETARY DISK DATA , 2010, 1007.1476.

[53]  Geoffrey A. Blake,et al.  A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. I. DETECTION RATES , 2010, 1006.4189.

[54]  V. Pirronello,et al.  DIRECT MEASUREMENTS OF HYDROGEN ATOM DIFFUSION AND THE SPIN TEMPERATURE OF NASCENT H2 MOLECULE ON AMORPHOUS SOLID WATER , 2010 .

[55]  T. Henning,et al.  CHEMISTRY IN DISKS. III. PHOTOCHEMISTRY AND X-RAY DRIVEN CHEMISTRY PROBED BY THE ETHYNYL RADICAL (CCH) IN DM Tau, LkCa 15, AND MWC 480 , 2010, 1003.5793.

[56]  J. Elsila,et al.  Cometary glycine detected in samples returned by Stardust , 2009 .

[57]  E. Herbst,et al.  Complex Organic Interstellar Molecules , 2009 .

[58]  G. Schaefer,et al.  A MILLIMETER-WAVE INTERFEROMETRIC STUDY OF DUST AND CO DISKS AROUND LATE SPECTRAL TYPE STARS IN TAURUS-AURIGA , 2009 .

[59]  R. Garrod,et al.  Formation rates of complex organics in UV irradiated CH3OH-rich ices I: Experiments , 2009, 0908.1169.

[60]  Sean M. Andrews,et al.  PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS , 2009, 0906.0730.

[61]  D. Wilner,et al.  A break in the gas and dust surface density of the disc around the T Tauri star IM Lupi , 2009, 0904.1127.

[62]  C. Dullemond,et al.  The chemical history of molecules in circumstellar disks - I. Ices , 2009, 0901.1313.

[63]  E. V. van Dishoeck,et al.  PHOTODESORPTION OF ICES. II. H2O AND D2O , 2008, 0812.1918.

[64]  E. Chapillon,et al.  Cavities in inner disks : the GM Aurigae case , 2008 .

[65]  E. Dishoeck,et al.  Photodesorption of ices I: CO, N₂, and CO₂ , 2008, 0809.1333.

[66]  G. Blake,et al.  Resolving the Chemistry in the Disk of TW Hydrae. I. Deuterated Species , 2008, 0803.2753.

[67]  J. Najita,et al.  Organic Molecules and Water in the Planet Formation Region of Young Circumstellar Disks , 2008, Science.

[68]  R. Garrod,et al.  Complex Chemistry in Star-forming Regions: An Expanded Gas-Grain Warm-up Chemical Model , 2008, 0803.1214.

[69]  F. Lahuis,et al.  H2O and OH Gas in the Terrestrial Planet-forming Zones of Protoplanetary Disks , 2008, 0802.0037.

[70]  K. Menten,et al.  Erratum: Detection of amino acetonitrile in Sgr B2(N) , 2008, 0801.3219.

[71]  Y. Hayano,et al.  Detection of Water Ice in Edge-on Protoplanetary Disks: HK Tauri B and HV Tauri C , 2007 .

[72]  T. Henning,et al.  Molecular Line Radiative Transfer in Protoplanetary Disks: Monte Carlo Simulations versus Approximate Methods , 2007, 0707.2905.

[73]  E. Herbst,et al.  Simulation of the Formation and Morphology of Ice Mantles on Interstellar Grains , 2007, 0707.2744.

[74]  R. Kaiser,et al.  On the Formation of Glycolaldehyde (HCOCH2OH) and Methyl Formate (HCOOCH3) in Interstellar Ice Analogs , 2007 .

[75]  T. Millar,et al.  The UMIST database for astrochemistry 2012 , 2012, 1212.6362.

[76]  R. Garrod,et al.  Non-thermal desorption from interstellar dust grains via exothermic surface reactions , 2007, astro-ph/0703188.

[77]  K. Willacy The Chemistry of Multiply Deuterated Molecules in Protoplanetary Disks. I. The Outer Disk , 2007, astro-ph/0701484.

[78]  A. Dutrey,et al.  Probing the structure of protoplanetary disks: a comparative study of DM Tau, LkCa 15, and MWC 480 , 2007, astro-ph/0701425.

[79]  Y. Aikawa Cold CO Gas in Protoplanetary Disks , 2007, astro-ph/0701366.

[80]  B. Jonkheid,et al.  Photoprocesses in protoplanetary disks. , 2006, Faraday discussions.

[81]  J. Pety,et al.  Resolving the inner dust disks surrounding LkCa 15 and MWC 480 at mm wavelengths , 2006, astro-ph/0610200.

[82]  A. Tielens,et al.  Dust coagulation in protoplanetary disks: porosity matters , 2006, astro-ph/0610030.

[83]  T. Millar,et al.  Molecular Hydrogen Emission from Protoplanetary Disks. II. Effects of X-Ray Irradiation and Dust Evolution , 2006, Proceedings of the International Astronomical Union.

[84]  R. Garrod,et al.  Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores , 2006, astro-ph/0607560.

[85]  T. Henning,et al.  Gas-Phase CO in Protoplanetary Disks: A Challenge for Turbulent Mixing , 2006, astro-ph/0607010.

[86]  M. Allen,et al.  Turbulence-driven Diffusion in Protoplanetary Disks: Chemical Effects in the Outer Regions , 2006, astro-ph/0603103.

[87]  Y. Aikawa,et al.  Physical and Chemical Structure of Protoplanetary Disks with Grain Growth , 2006, astro-ph/0601230.

[88]  C. Dullemond,et al.  Hot Organic Molecules toward a Young Low-Mass Star: A Look at Inner Disk Chemistry , 2005, astro-ph/0511786.

[89]  Sao,et al.  Effects of Dust Growth and Settling in T Tauri Disks , 2005, astro-ph/0511564.

[90]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[91]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[92]  T. Millar,et al.  Molecular hydrogen emission from protoplanetary disks , 2005, astro-ph/0505126.

[93]  P. Ehrenfreund,et al.  A voyage from dark clouds to the early Earth , 2005 .

[94]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.

[95]  J. Tarter,et al.  The cradle of life , 2004 .

[96]  Mark R. Anderson,et al.  A laboratory survey of the thermal desorption of astrophysically relevant molecules , 2004 .

[97]  E. A. Alekseev,et al.  A Rigorous Attempt to Verify Interstellar Glycine , 2004, astro-ph/0410335.

[98]  Astronomy,et al.  Organic molecules in protoplanetary disks around T Tauri and Herbig Ae stars , 2004, astro-ph/0406577.

[99]  C. Dominik,et al.  The effect of dust settling on the appearance of protoplanetary disks , 2004, astro-ph/0405226.

[100]  Didier Despois,et al.  Ethylene glycol in comet C/1995 O1 (Hale-Bopp) , 2004 .

[101]  Jacques Crovisier,et al.  The composition of ices in comet C/1995 O1 (Hale-Bopp) from radio spectroscopy , 2004 .

[102]  P. Caselli,et al.  H2 Formation on Grain Surfaces , 2004, Proceedings of the International Astronomical Union.

[103]  T. Henning,et al.  Transport processes and chemical evolution in steady accretion disk flows , 2004 .

[104]  Voislav Blagojevic,et al.  Gas-phase syntheses for interstellar carboxylic and amino acids , 2003 .

[105]  G. V. Zadelhoff,et al.  Detection of DCO+ in a circumstellar disk , 2003, astro-ph/0301571.

[106]  G. V. Zadelhoff,et al.  Interferometric Observations of Formaldehyde in the Protoplanetary Disk around LkCa 15 , 2002, astro-ph/0211440.

[107]  David E. Woon,et al.  Pathways to Glycine and Other Amino Acids in Ultraviolet-irradiated Astrophysical Ices Determined via Quantum Chemical Modeling , 2002 .

[108]  E. Herbst,et al.  New models of interstellar gas–grain chemistry – I. Surface diffusion rates , 2002 .

[109]  A. Brack,et al.  Amino acids from ultraviolet irradiation of interstellar ice analogues , 2002, Nature.

[110]  Scott A. Sandford,et al.  Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues , 2002, Nature.

[111]  C. I. O. Technology.,et al.  Submillimeter lines from circumstellar disks around pre-main sequence stars , 2001, astro-ph/0108375.

[112]  E. Bergin,et al.  X-Ray Desorption of Molecules from Grains in Protoplanetary Disks , 2001, astro-ph/0108055.

[113]  E. Herbst,et al.  New models of interstellar gas–grain chemistry – III. Solid CO2 , 2001 .

[114]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[115]  L. Hartmann,et al.  Accretion Disks around Young Objects. III. Grain Growth , 2001, astro-ph/0101443.

[116]  W. Langer,et al.  The Importance of Photoprocessing in Protoplanetary Disks , 2000 .

[117]  J. M. Hollis,et al.  Interstellar Glycolaldehyde: The First Sugar , 2000 .

[118]  J. Valenti,et al.  An IUE Atlas of Pre-Main-Sequence Stars. II. Far-Ultraviolet Accretion Diagnostics in T Tauri Stars , 2000 .

[119]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[120]  Marla H. Moore,et al.  IR Spectra of Irradiated Cometary Ice Analogues Containing Methanol: A New Assignment, a Reassignment, and a Nonassignment , 2000 .

[121]  O. Biham,et al.  Molecular Hydrogen Formation on Astrophysically Relevant Surfaces , 1999, astro-ph/9906071.

[122]  R. Norris,et al.  Methanol Masers as Tracers of Circumstellar Disks , 1998, astro-ph/9806284.

[123]  T. Forveille,et al.  X-ray and molecular emission from the nearest region of recent star formation. , 1997, Science.

[124]  O. Biham,et al.  Efficiency of Molecular Hydrogen Formation on Silicates , 1997, astro-ph/9704236.

[125]  R. Kaiser,et al.  Theoretical and Laboratory Studies on the Interaction of Cosmic-Ray Particles with Interstellar Ices. I. Synthesis of Polycyclic Aromatic Hydrocarbons by a Cosmic-Ray-Induced Multicenter Mechanism , 1997 .

[126]  E. Dwek,et al.  Energy Deposition and Photoelectric Emission from the Interaction of 10 eV to 1 MeV Photons with Interstellar Dust Particles , 1996 .

[127]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[128]  Robert E. Johnson,et al.  Ultraviolet photodesorption from water ice , 1995 .

[129]  Alexander G. G. M. Tielens,et al.  The physics of grain-grain collisions and gas-grain sputtering in interstellar shocks , 1994 .

[130]  David A. Neufeld,et al.  Dense molecular shocks and accretion onto protostellar disks , 1994 .

[131]  E. Herbst,et al.  New gas–grain chemical models of quiescent dense interstellar clouds: the effects of H2 tunnelling reactions and cosmic ray induced desorption , 1993 .

[132]  E. Herbst,et al.  Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules , 1992 .

[133]  B. Turner A Molecular Line Survey of Sagittarius B2 and Orion--KL from 70 to 115 GHz. II. Analysis of the Data , 1991 .

[134]  Scott A. Sandford,et al.  Photochemical and thermal evolution of interstellar/precometary ice analogs , 1988 .

[135]  I. Smith Rate of the reaction: $\text {OH}+\text{CO}\longrightarrow \text{CO}_2+\text H$ at interstellar temperatures , 1988 .

[136]  D. Prialnik,et al.  Radiogenic heating of comets by 26Al and implications for their time of formation. , 1987, The Astrophysical journal.

[137]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[138]  S. Prasad,et al.  UV radiation field inside dense clouds: its possible existence and chemical implications , 1983 .

[139]  T. Graedel,et al.  The kinetic chemistry of dense interstellar clouds , 1982 .

[140]  J. Pringle Accretion Discs in Astrophysics , 1981 .

[141]  Max K. Wallis,et al.  Radiogenic melting of primordial comet interiors , 1980, Nature.

[142]  T. Nakano,et al.  EFFECTS OF RADIONUCLIDES ON THE IONIZATION STATE OF PROTOPLANETARY DISKS AND DENSE CLOUD CORES , 2008 .

[143]  D. Lis,et al.  Astrochemistry : recent successes and current challenges : proceedings of the 231st Symposium of the International Astronomical Union held in Pacific Grove, California, USA August 29 - September 2, 2005 , 2005 .

[144]  A. Dutrey,et al.  Observations of the Chemistry in Circumstellar Disks , 2000 .

[145]  T. Millar,et al.  The UMIST Database for Astrochemistry 1995 , 1997 .

[146]  C. Cosmovici,et al.  Astronomical and biochemical origins and the search for life in the universe, IAU Colloquium 161 , 1997 .

[147]  Duane A. Liedahl,et al.  New Calculations of Fe L-Shell X-Ray Spectra in High-Temperature Plasmas , 1995 .

[148]  J L Bada,et al.  The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy and dicarboxylic acids. , 1984, Advances in space research : the official journal of the Committee on Space Research.

[149]  J A Simpson,et al.  Elemental and Isotopic Composition of the Galactic Cosmic Rays , 1983 .