Asteroid 6 Hebe: The probable parent body of the H‐type ordinary chondrites and the IIE iron meteorites

— The S(IV)-type asteroid 6 Hebe is identified as the probable parent body of the H-type ordinary chondrites and of the IIE iron meteorites. The ordinary chondrites are the most common type of meteorites falling to Earth; but prior to the present study, no large mainbelt source bodies have been confirmed. Hebe is located adjacent to both the v6 and 3:1 resonances and has been previously suggested as a major potential source of the terrestrial meteorite flux. Hebe exhibits subtle rotational spectral variations, indicating the presence of some compositional variations across its surface. The silicate portion of the surface assemblage of Hebe is consistent (both in overall average and in its range of variation) with the silicate components in the suite of H-type chondrites. The high albedo of Hebe rules out a lunar-style space weathering process to produce the weakened absorption features and reddish spectral slope in the S-type spectrum of Hebe. Linear unmixing models show that a typical Ni-Fe metal spectrum is consistent with the component that modifies an H-chondrite spectrum to produce the S-type spectrum of Hebe. On the basis of the association between the H chondrites and the HE iron meteorites, our model suggests that large impacts onto the relatively metal-rich H-chondrite target produced melt bodies (sheets or pods) that differentiated to form thin, laterally extensive near-surface layers of Ni-Fe metal. Fragments of the upper silicate portions of these melt bodies are apparently represented by some of the igneous inclusions in H-chondrite breccias. Alternately, masses of metal could have been deposited on the surface of Hebe by the impact of a core or core fragment from a differentiated parent body of H-chondrite composition. Subsequent impacts preferentially eroded and depleted the overlying silicate and regolith components, exposing and maintaining large masses of metal at the optical surface of Hebe. In this interpretation, the nonmagmatic IIE iron meteorites are samples of the Ni-Fe metal masses on the surface of Hebe, whereas the H chondrites are samples from between and/or beneath the metal masses.

[1]  J. Minster,et al.  87Rb87Sr chronology of H chondrites: Constraint and speculations on the early evolution of their parent body , 1979 .

[2]  G. J. Taylor Core formation in asteroids , 1992 .

[3]  K. Keil,et al.  Implications of poikilitic textures in LL-group chondrites , 1975 .

[4]  W. Hartmann,et al.  Asteroids - The big picture , 1989 .

[5]  M. Skrutskie,et al.  Discovery of a Main-Belt Asteroid Resembling Ordinary Chondrite Meteorites , 1993, Science.

[6]  L. Taylor,et al.  Mega-chondrules and large, igneous-textured clasts in Julesberg (L3) and other ordinary chondrites: vapor-fractionation, shock-melting, and chondrule formation , 1998 .

[7]  M. E. Davies,et al.  Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl , 1995, Nature.

[8]  M. Norman,et al.  39Ar40Ar age and petrology of Chico: Large-scale impact melting on the L chondrite parent body , 1995 .

[9]  A. Rubin Petrologic evidence for collisional heating of chondritic asteroids , 1995 .

[10]  I. Yolcubal,et al.  Formation conditions of igneous regions in ordinary chondrites: Chico, Rose City, and other heavily shocked H and L chondrites , 1997 .

[11]  F. Herbert Primordial electrical induction heating of asteroids , 1989 .

[12]  J. Salisbury,et al.  Comparisons of meteorite and asteroid spectral reflectivities , 1973 .

[13]  R. Carmichael CRC handbook of physical properties of rocks , 1982 .

[14]  J. Williams,et al.  A Three-Parameter Asteroid Taxonomy , 1989 .

[15]  V. Oberbeck,et al.  Estimated thickness of a fragmental surface layer of Oceanus Procellarum. , 1967 .

[16]  D. Mittlefehldt,et al.  Evolutionary history of the mesosiderite asteroid - A chronologic and petrologic synthesis , 1993 .

[17]  Veverka,et al.  NEAR's flyby of 253 mathilde: images of a C asteroid , 1997, Science.

[18]  James G. Williams,et al.  The positions of secular resonance surfaces , 1981 .

[19]  Z. Knežević,et al.  Rotation axes of asteroids: Results for 14 objects , 1984 .

[20]  I. Shapiro,et al.  Asteroid 1986 DA: Radar Evidence for a Metallic Composition , 1991, Science.

[21]  M. Zolensky,et al.  Chemical, thermal and impact processing of asteroids , 1989 .

[22]  R. Clayton,et al.  Watson: A new link in the IIE iron chain , 1991 .

[23]  A. Harris,et al.  Asteroid lightcurve parameters , 1989 .

[24]  D. Britt,et al.  The porosities of ordinary chondrites: Models and interpretation , 1998 .

[25]  P. Farinella,et al.  Delivery of meteorites through the nu 6 secular resonance , 1994 .

[26]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[27]  R. Clayton,et al.  Oxygen isotope studies of ordinary chondrites , 1991 .

[28]  New Views of Asteroids , 1997, Science.

[29]  T. Ahrens,et al.  Impact-induced melting of planetary surfaces , 1992 .

[30]  P. Farinella,et al.  Polarimetric Observations of (6) Hebe , 1994 .

[31]  W. Jianmin,et al.  A nonmagmatic origin of group-IIE iron meteorites , 1986 .

[32]  B. Clark Spectral mixing models of S‐type asteroids , 1995 .

[33]  Michael J. Gaffey,et al.  Relationship of E-type Apollo asteroid 3103 (1982 BB) to the enstatite achondrite meteorites and the Hungaria asteroids , 1992 .

[34]  A. McEwen,et al.  First Images of Asteroid 243 Ida , 1994, Science.

[35]  P. Farinella,et al.  Meteorites from the asteroid 6 Hebe , 1993 .

[36]  H. McSween,et al.  Oxidation during metamorphism of the ordinary chondrites , 1993 .

[37]  John W. Fowler,et al.  The IRAS Minor Planet Survey , 1992 .

[38]  Michael J. Gaffey,et al.  Surface Lithologic Heterogeneity of Asteroid 4 Vesta , 1997 .

[39]  L. Wilkening Tysnes Island - An unusual clast composed of solidified, immiscible, Fe-FeS and silicate melts. [in meteorite , 1978 .

[40]  K. Marti,et al.  Discovery of an Unmelted H-Chondrite Inclusion in an Iron Meteorite , 1995, Science.

[41]  G. Wetherill,et al.  Dynamical chemical and isotopic evidence regarding the formation locations of asteroids and meteorites. , 1979 .

[42]  R. Clayton,et al.  Oxygen isotope relationships in iron meteorites , 1983 .

[43]  Verne R. Oberbeck,et al.  Thickness determinations of the lunar surface layer from lunar impact craters. , 1968 .

[44]  E. Scott,et al.  Constraints on the role of impact heating and melting in asteroids , 1997 .

[45]  N. Fujii,et al.  Ordinary chondrite parent body - An internal heating model , 1982 .

[46]  K. Keil,et al.  THE ORO GRANDE, NEW MEXICO, CHONDRITE AND ITS LITHIC INCLUSION , 1972 .

[47]  P. Farinella,et al.  The Injection of Asteroid Fragments into Resonances , 1993 .

[48]  P. Pellas,et al.  Thermal histories of ordinary chondrite parent asteroids , 1988 .

[49]  Clark R. Chapman,et al.  S-Type Asteroids, Ordinary Chondrites, and Space Weathering: The Evidence from Galileo's Fly-bys of Gaspra and Ida , 1996 .

[50]  J. Veverka,et al.  Discovery and physical properties of Dactyl, a satellite of asteroid 243 Ida , 1995, Nature.

[51]  K. Keil,et al.  FRAGMENTAL BRECCIAS AND THE COLLISIONAL EVOLUTION OF ORDINARY CHONDRITE PARENT BODIES , 1983 .

[52]  M. Zolensky,et al.  The porosity and permeability of chondritic meteorites and interplanetary dust particles , 1997 .

[53]  J. Wisdom A perturbative treatment of motion near the 3/1 commensurability , 1985 .

[54]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[55]  I. Shapiro,et al.  Mainbelt Asteroids: Dual-Polarization Radar Observations , 1985, Science.

[56]  K. Keil,et al.  PARTIAL MELTING AND MELT MIGRATION IN THE ACAPULCOITE-LODRANITE PARENT BODY , 1997 .

[57]  H. McSween,et al.  Revised model calculations for the thermal histories of ordinary chondrite parent bodies , 1996 .

[58]  T. McCord,et al.  Asteroid spectral reflectivities. , 1973 .

[59]  R. Clayton,et al.  Properties of the Guin ungrouped iron meteorite: the origin of Guin and of group-IIE irons , 1986 .

[60]  C. Pieters,et al.  Optical Effects of Regolith Processes on S-Asteroids as Simulated by Laser Shots on Ordinary Chondrite and Other Mafic Materials , 1996 .

[61]  Per Magnusson,et al.  Distribution of spin axes and senses of rotation for 20 large asteroids , 1986 .

[62]  R. Clayton,et al.  A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors , 1997 .

[63]  D. Sears,et al.  REGOLITH AND MEGAREGOLITH FORMATION OF H-CHONDRITES : THERMAL CONSTRAINTS ON THE PARENT BODY , 1998 .

[64]  Michael J. Gaffey,et al.  Metal silicate mixtures - Spectral properties and applications to asteroid taxonomy , 1990 .

[65]  D. Britt,et al.  Reflection spectra of shocked ordinary chondrites and their relationship to asteroids , 1992 .

[66]  M. Gaffey Rotational spectral variations of asteroid (8) Flora: Implications for the nature of the S-type asteroids and for the parent bodies of the ordinary chondrites , 1984 .

[67]  M. Lindstrom,et al.  Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology, and origin , 1996 .

[68]  C. Chapman,et al.  Spectroscopic evidence for undifferentiated S-type asteroids , 1982 .

[69]  M. Gaffey,et al.  Mineralogical and petrological characterizations of asteroid surface materials , 1979 .

[70]  T. Gehrels,et al.  Minor planets and related objects. XXII - Phase functions for /6/ Hebe , 1977 .

[71]  D. Britt,et al.  Darkening in black and gas-rich ordinary chondrites: The spectral effects of opaque morphology and distribution , 1994 .

[72]  P. Farinella,et al.  Surface Properties of (6) Hebe: A Possible Parent Body of Ordinary Chondrites , 1997 .

[73]  J. Bridges,et al.  A survey of clasts and large chondrules in ordinary chondrites , 1997 .

[74]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[75]  John W. Salisbury,et al.  Meteorite-asteroid spectral comparison: The effects of comminution, melting, and recrystallization , 1992 .

[76]  H. McSween,et al.  The mineralogy of ordinary chondrites and implications for asteroid spectrophotometry , 1991 .

[77]  R. Binzel,et al.  Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.

[78]  J. Bell,et al.  Modeling of S-type asteroid spectra using primitive achondrites and iron meteorites , 1993 .

[79]  T. Hiroi,et al.  Mineralogy of new Antarctic achondrites with affinity to Lodran and a model of their evolution in an asteroid , 1994 .

[80]  M. Gaffey,et al.  Asteroids: Surface Composition from Reflection Spectroscopy , 1974, Science.

[81]  T. McCord A double beam astronomical photometer. , 1968, Applied optics.

[82]  C. Chapman,et al.  ASTEROIDS AND METEORITES , 2021, Disturbing the Solar System.

[83]  M. Gaffey The spectral and physical properties of metal in meteorite assemblages: Implications for asteroid surface materials , 1986 .

[84]  Carle M. Pieters,et al.  Remote Determination of Exposure Degree and Iron Concentration of Lunar Soils Using VIS-NIR Spectroscopic Methods , 1994 .

[85]  Richard P. Binzel,et al.  Asteroid spectroscopy: Progress and perspectives , 1993 .

[86]  M. Ghiorso,et al.  Igneous inclusions from ordinary chondrites: High temperature cumulates and a shock melt , 1994 .

[87]  Richard P. Binzel,et al.  Small main-belt asteroid spectroscopic survey: Initial results , 1995 .

[88]  Dale P. Cruikshank,et al.  Reflectance spectroscopy and asteroid surface mineralogy , 1989 .