Rate-Optimal Perturbation Bounds for Singular Subspaces with Applications to High-Dimensional Statistics
暂无分享,去创建一个
[1] Jianqing Fan,et al. An l∞ Eigenvector Perturbation Bound and Its Application to Robust Covariance Estimation , 2018, Journal of machine learning research : JMLR.
[2] Jianqing Fan,et al. An $\ell_{\infty}$ Eigenvector Perturbation Bound and Its Application , 2016, J. Mach. Learn. Res..
[3] Dan Yang,et al. Rate Optimal Denoising of Simultaneously Sparse and Low Rank Matrices , 2014, J. Mach. Learn. Res..
[4] K. Horadam,et al. Community Detection in Bipartite Networks: Algorithms and Case studies , 2016 .
[5] Donggyu Kim,et al. Asymptotic Theory for Estimating the Singular Vectors and Values of a Partially-observed Low Rank Matrix with Noise , 2015, 1508.05431.
[6] Xiaodong Li,et al. Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow , 2015, ArXiv.
[7] Jiashun Jin,et al. Phase Transitions for High Dimensional Clustering and Related Problems , 2015, 1502.06952.
[8] Zhi-Quan Luo,et al. Guaranteed Matrix Completion via Non-Convex Factorization , 2014, IEEE Transactions on Information Theory.
[9] Harrison H. Zhou,et al. Minimax estimation in sparse canonical correlation analysis , 2014, 1405.1595.
[10] A. Rinaldo,et al. Consistency of spectral clustering in stochastic block models , 2013, 1312.2050.
[11] T. Cai,et al. Optimal estimation and rank detection for sparse spiked covariance matrices , 2013, Probability theory and related fields.
[12] S. Chatterjee,et al. Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.
[13] Rongrong Wang,et al. Singular Vector Perturbation Under Gaussian Noise , 2012, SIAM J. Matrix Anal. Appl..
[14] Christos Boutsidis,et al. Randomized Dimensionality Reduction for $k$ -Means Clustering , 2011, IEEE Transactions on Information Theory.
[15] Harrison H. Zhou,et al. Sparse CCA: Adaptive Estimation and Computational Barriers , 2014, 1409.8565.
[16] Jiashun Jin,et al. Influential Feature PCA for high dimensional clustering , 2014, 1407.5241.
[17] Wanjie Wang,et al. Important Feature PCA for high dimensional clustering , 2014 .
[18] David Melamed,et al. Community Structures in Bipartite Networks: A Dual-Projection Approach , 2014, PloS one.
[19] Tengyao Wang,et al. A useful variant of the Davis--Kahan theorem for statisticians , 2014, 1405.0680.
[20] David L. Donoho,et al. The Optimal Hard Threshold for Singular Values is 4/sqrt(3) , 2013, 1305.5870.
[21] D. Donoho,et al. Minimax risk of matrix denoising by singular value thresholding , 2013, 1304.2085.
[22] Qiuping Xu. Canonical correlation Analysis , 2014 .
[23] Harrison H. Zhou,et al. Sparse CCA via Precision Adjusted Iterative Thresholding , 2013, 1311.6186.
[24] V. Vu,et al. Random perturbation of low rank matrices: Improving classical bounds , 2013, 1311.2657.
[25] M. Rudelson,et al. Hanson-Wright inequality and sub-gaussian concentration , 2013 .
[26] Larry A. Wasserman,et al. Minimax Theory for High-dimensional Gaussian Mixtures with Sparse Mean Separation , 2013, NIPS.
[27] Dan Feldman,et al. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering , 2013, SODA.
[28] T. Cai,et al. Sparse PCA: Optimal rates and adaptive estimation , 2012, 1211.1309.
[29] Emmanuel J. Candès,et al. Unbiased Risk Estimates for Singular Value Thresholding and Spectral Estimators , 2012, IEEE Transactions on Signal Processing.
[30] Andrew B. Nobel,et al. Reconstruction of a low-rank matrix in the presence of Gaussian noise , 2010, J. Multivar. Anal..
[31] D. Donoho,et al. The Optimal Hard Threshold for Singular Values is 4 / √ 3 , 2013 .
[32] T. Tao. Topics in Random Matrix Theory , 2012 .
[33] Raj Rao Nadakuditi,et al. The singular values and vectors of low rank perturbations of large rectangular random matrices , 2011, J. Multivar. Anal..
[34] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[35] Sivaraman Balakrishnan,et al. Noise Thresholds for Spectral Clustering , 2011, NIPS.
[36] Bin Yu,et al. Spectral clustering and the high-dimensional stochastic blockmodel , 2010, 1007.1684.
[37] Van H. Vu. Singular vectors under random perturbation , 2011, Random Struct. Algorithms.
[38] David Gross,et al. Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.
[39] Andrea Montanari,et al. Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..
[40] Emmanuel J. Candès,et al. Matrix Completion With Noise , 2009, Proceedings of the IEEE.
[41] Emmanuel J. Candès,et al. The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.
[42] Amit Singer,et al. Uniqueness of Low-Rank Matrix Completion by Rigidity Theory , 2009, SIAM J. Matrix Anal. Appl..
[43] Lieven Vandenberghe,et al. Interior-Point Method for Nuclear Norm Approximation with Application to System Identification , 2009, SIAM J. Matrix Anal. Appl..
[44] R. Tibshirani,et al. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.
[45] I. Johnstone,et al. On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.
[46] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[47] C. Donati-Martin,et al. The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.
[48] R. Vershynin. Spectral norm of products of random and deterministic matrices , 2008, 0812.2432.
[49] Ruth M. Pfeiffer,et al. On the distribution of the left singular vectors of a random matrix and its applications , 2008 .
[50] Mikhail Belkin,et al. Consistency of spectral clustering , 2008, 0804.0678.
[51] Massimiliano Pontil,et al. Convex multi-task feature learning , 2008, Machine Learning.
[52] Michael Stewart,et al. Perturbation of the SVD in the presence of small singular values , 2006 .
[53] John Shawe-Taylor,et al. Canonical Correlation Analysis: An Overview with Application to Learning Methods , 2004, Neural Computation.
[54] C. Parvin. An Introduction to Multivariate Statistical Analysis, 3rd ed. T.W. Anderson. Hoboken, NJ: John Wiley & Sons, 2003, 742 pp., $99.95, hardcover. ISBN 0-471-36091-0. , 2004 .
[55] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[56] F. M. Dopico. A Note on Sin Θ Theorems for Singular Subspace Variations , 2000 .
[57] P. Groenen,et al. Modern Multidimensional Scaling: Theory and Applications , 1999 .
[58] Bin Yu. Assouad, Fano, and Le Cam , 1997 .
[59] Douglas B. Terry,et al. Using collaborative filtering to weave an information tapestry , 1992, CACM.
[60] G. Stewart. Perturbation theory for the singular value decomposition , 1990 .
[61] P. Wedin. Perturbation bounds in connection with singular value decomposition , 1972 .
[62] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[63] Chandler Davis. The rotation of eigenvectors by a perturbation , 1963 .
[64] T. W. Anderson,et al. An Introduction to Multivariate Statistical Analysis , 1959 .
[65] H. Hotelling. Relations Between Two Sets of Variates , 1936 .
[66] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .