Singular FIOs in SAR Imaging, II: Transmitter and Receiver at Different Speeds

In this article, we consider two bistatic cases arising in synthetic aperture radar imaging: when the transmitter and receiver are both moving with different speeds along a single line parallel to the ground in the same direction or in the opposite directions. In both cases, we classify the forward operator $\mathcal{F}$ as a Fourier integral operator with fold/blowdown singularities. Next we analyze the normal operator $\mathcal{F}^*\mathcal{F}$ in both cases (where $\mathcal{F}^{*}$ is the $L^{2}$-adjoint of $\mathcal{F}$). When the transmitter and receiver move in the same direction, we prove that $\mathcal{F}^*\mathcal{F}$ belongs to a class of operators associated to two cleanly intersecting Lagrangians, $I^{p,l} (\Delta, C_1)$. When they move in opposite directions, $\mathcal{F}^*\mathcal{F}$ is a sum of such operators. In both cases artifacts appear, and we show that they are, in general, as strong as the bona fide part of the image. Moreover, we demonstrate that as soon as the source and receiver ...

[1]  Michael Taylor,et al.  Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle , 1985 .

[2]  Maarten V. de Hoop,et al.  Microlocal analysis of seismic inverse scattering in anisotropic elastic media , 2002 .

[3]  R. Felea Displacement of artefacts in inverse scattering , 2007 .

[4]  Eric Todd Quinto,et al.  Characterization and reduction of artifacts in limited angle tomography , 2013 .

[5]  Gunther Uhlmann,et al.  The inverse problem for the local geodesic ray transform , 2012, 1210.2084.

[6]  Plamen Stefanov,et al.  Is a Curved Flight Path in SAR Better than a Straight One? , 2012, SIAM J. Appl. Math..

[7]  Gunther Uhlmann,et al.  Estimates for singular radon transforms and pseudodifferential operators with singular symbols , 1990 .

[8]  Gunther Uhlmann,et al.  Oscillatory integrals with singular symbols , 1981 .

[9]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[10]  E. T. Quinto,et al.  MICROLOCAL ASPECTS OF BISTATIC SYNTHETIC APERTURE RADAR IMAGING , 2010, 1008.0687.

[12]  Margaret Cheney,et al.  Microlocal Analysis of Synthetic Aperture Radar Imaging , 2004 .

[13]  G. Uhlmann,et al.  Stability estimates for the X-ray transform of tensor fields and boundary rigidity , 2004 .

[14]  Plamen Stefanov,et al.  Integral Geometry of Tensor Fields on a Class of Non-Simple Riemannian Manifolds , 2006 .

[15]  G. Uhlmann,et al.  Nonlocal inversion formulas for the X-ray transform , 1989 .

[16]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[17]  Plamen Stefanov,et al.  Boundary rigidity and stability for generic simple metrics , 2004, math/0408075.

[18]  Shlomo Sternberg,et al.  Geometric Asymptotics, Revised edition , 1977 .

[19]  David V. Finch,et al.  Microlocal Analysis of the X-Ray Transform with Sources on a Curve , 2003 .

[20]  A. Greenleaf,et al.  An FIO calculus for marine seismic imaging, II: Sobolev estimates , 2009, 0903.1780.

[21]  Allan Greenleaf,et al.  An FIO Calculus for Marine Seismic Imaging: Folds and Cross Caps , 2006, math/0605774.

[22]  Can Evren Yarman,et al.  Synthetic-aperture inversion in the presence of noise and clutter , 2006 .

[23]  J. Heo,et al.  Inversion of the elliptical Radon transform arising in migration imaging using the regular Radon transform , 2015, 1507.06031.

[24]  William W. Symes,et al.  Global solution of a linearized inverse problem for the wave equation , 1997 .

[25]  Gunther Uhlmann,et al.  Lagrangian Intersection and the Cauchy Problem , 1979 .

[26]  V. P. Krishnan,et al.  A class of singular Fourier integral operators in Synthetic Aperture Radar imaging , 2011, 1110.1149.

[27]  Margaret Cheney,et al.  A Mathematical Tutorial on Synthetic Aperture Radar , 2001, SIAM Rev..

[28]  Andreas Rieder,et al.  Local inversion of the sonar transform regularized by the approximate inverse , 2011 .

[29]  Venkateswaran P. Krishnan,et al.  INVERSION OF A CLASS OF CIRCULAR AND ELLIPTICAL RADON TRANSFORMS , 2015 .

[30]  Victor Guillemin,et al.  Cosmology in (2+1)- Dimensions, Cyclic Models, and Deformations of M2,1 , 1989 .

[31]  Gunther Uhlmann,et al.  Composition of some singular Fourier integral operators and estimates for restricted $X$-ray transforms , 1990 .

[32]  G. Uhlmann,et al.  A functional calculus for a class of pseudodifferential operators with singular symbols , 1985 .

[33]  Raluca Felea Composition of Fourier Integral Operators with Fold and Blowdown Singularities , 2005 .

[34]  G. Uhlmann,et al.  Inverting the local geodesic X-ray transform on tensors , 2014, Journal d'Analyse Mathématique.

[35]  E. T. Quinto,et al.  Microlocal analysis of an ultrasound transform with circular source and receiver trajectories , 2011, 1110.4339.

[36]  Clifford J. Nolan Scattering in the Presence of Fold Caustics , 2000, SIAM J. Appl. Math..

[37]  A. Greenleaf,et al.  Fourier integral operators with open umbrellas and seismic inversion for cusp caustics , 2010, 1001.4848.

[38]  Eric Todd Quinto,et al.  The Microlocal Properties of the Local 3-D SPECT Operator , 2011, SIAM J. Math. Anal..

[39]  Alexander Katsevich,et al.  Local Tomography for the Limited-Angle Problem , 1997 .

[40]  A. P. E. ten Kroode,et al.  A microlocal analysis of migration , 1998 .

[41]  A. Greenleaf,et al.  Fourier integral operators with cusp singularities , 1998 .

[42]  Y. Egorov,et al.  Fourier Integral Operators , 1994 .

[43]  Maarten V. de Hoop,et al.  Microlocal Analysis of Seismic Inverse Scattering , 2003 .

[44]  Allan Greenleaf,et al.  Fourier integral operators with fold singularities. , 1994 .

[45]  B. Borden,et al.  Fundamentals of Radar Imaging , 2009 .