Reconstruction of natural images from responses of primate retinal ganglion cells

The visual message conveyed by a retinal ganglion cell (RGC) is often summarized by its spatial receptive field, but in principle also depends on the responses of other RGCs and natural image statistics. This possibility was explored by linear reconstruction of natural images from responses of the four numerically-dominant macaque RGC types. Reconstructions were highly consistent across retinas. The optimal reconstruction filter for each RGC – its visual message – reflected natural image statistics, and resembled the receptive field only when nearby, same-type cells were included. ON and OFF cells conveyed largely independent, complementary representations, and parasol and midget cells conveyed distinct features. Correlated activity and nonlinearities had statistically significant but minor effects on reconstruction. Simulated reconstructions, using linear-nonlinear cascade models of RGC light responses that incorporated measured spatial properties and nonlinearities, produced similar results. Spatiotemporal reconstructions exhibited similar spatial properties, suggesting that the results are relevant for natural vision.

[1]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[2]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[3]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[4]  P. Gouras Identification of cone mechanisms in monkey ganglion cells , 1968, The Journal of physiology.

[5]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[6]  F. de Monasterio,et al.  Properties of concentrically organized X and Y ganglion cells of macaque retina. , 1978, Journal of neurophysiology.

[7]  F. M. D. Monasterio Properties of concentrically organized X and Y ganglion cells of macaque retina. , 1978 .

[8]  P. Lennie,et al.  The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat , 1982, The Journal of physiology.

[9]  D. Mastronarde Interactions between ganglion cells in cat retina. , 1983, Journal of neurophysiology.

[10]  C. Enroth-Cugell,et al.  Spatio‐temporal interactions in cat retinal ganglion cells showing linear spatial summation. , 1983, The Journal of physiology.

[11]  B. Boycott,et al.  Mosaics and territories of cat retinal ganglion cells. , 1983, Progress in brain research.

[12]  R. Shapley,et al.  The receptive field organization of X-cells in the cat: Spatiotemporal coupling and asymmetry , 1984, Vision Research.

[13]  A. Cowey,et al.  The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors , 1985, Vision Research.

[14]  A. Cowey,et al.  The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors , 1986, Behavioural Brain Research.

[15]  L. Thibos,et al.  Retinal limits to the detection and resolution of gratings. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[16]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[17]  W. Merigan,et al.  Spatial resolution across the macaque retina , 1990, Vision Research.

[18]  D. Dacey,et al.  Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[20]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[21]  D. Dacey The mosaic of midget ganglion cells in the human retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  B. B. Lee,et al.  Steady discharges of macaque retinal ganglion cells , 1991, Visual Neuroscience.

[23]  D. Baylor,et al.  Concerted Signaling by Retinal Ganglion Cells , 1995, Science.

[24]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[25]  E. Kaplan,et al.  The receptive field of the primate P retinal ganglion cell, II: Nonlinear dynamics , 1997, Visual Neuroscience.

[26]  D. Baylor,et al.  Mosaic arrangement of ganglion cell receptive fields in rabbit retina. , 1997, Journal of neurophysiology.

[27]  E. Kaplan,et al.  The receptive field of the primate P retinal ganglion cell, I: Linear dynamics , 1997, Visual Neuroscience.

[28]  Pamela Reinagel,et al.  Decoding visual information from a population of retinal ganglion cells. , 1997, Journal of neurophysiology.

[29]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G B Stanley,et al.  Reconstruction of Natural Scenes from Ensemble Responses in the Lateral Geniculate Nucleus , 1999, The Journal of Neuroscience.

[31]  S. DeVries Correlated firing in rabbit retinal ganglion cells. , 1999, Journal of neurophysiology.

[32]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[33]  P. Latham,et al.  Retinal ganglion cells act largely as independent encoders , 2001, Nature.

[34]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[35]  Zhou Wang,et al.  Why is image quality assessment so difficult? , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[36]  Paul D. Gamlin,et al.  Fireworks in the Primate Retina In Vitro Photodynamics Reveals Diverse LGN-Projecting Ganglion Cell Types , 2003, Neuron.

[37]  A.M. Litke,et al.  What does the eye tell the brain?: Development of a system for the large scale recording of retinal output activity , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[38]  E. Chichilnisky,et al.  Precision of spike trains in primate retinal ganglion cells. , 2004, Journal of neurophysiology.

[39]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[40]  Michael J. Berry,et al.  Redundancy in the Population Code of the Retina , 2005, Neuron.

[41]  E. Chichilnisky,et al.  Fidelity of the ensemble code for visual motion in primate retina. , 2005, Journal of neurophysiology.

[42]  Jonathon Shlens,et al.  The Structure of Multi-Neuron Firing Patterns in Primate Retina , 2006, The Journal of Neuroscience.

[43]  Jonathon Shlens,et al.  Spatial Properties and Functional Organization of Small Bistratified Ganglion Cells in Primate Retina , 2007, The Journal of Neuroscience.

[44]  D. Ringach On the Origin of the Functional Architecture of the Cortex , 2007, PloS one.

[45]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[46]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[47]  Mike E. Davies,et al.  IEEE International Conference on Acoustics Speech and Signal Processing , 2008 .

[48]  Umesh Rajashekar,et al.  DOVES: a database of visual eye movements. , 2009, Spatial vision.

[49]  Ryan J. Prenger,et al.  Bayesian Reconstruction of Natural Images from Human Brain Activity , 2009, Neuron.

[50]  L. Peichl Retinal ganglion cells , 1988 .

[51]  Jonathon Shlens,et al.  Uniform Signal Redundancy of Parasol and Midget Ganglion Cells in Primate Retina , 2009, The Journal of Neuroscience.

[52]  Jonathon Shlens,et al.  High sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina , 2009, Nature Neuroscience.

[53]  Liam Paninski,et al.  Population decoding of motor cortical activity using a generalized linear model with hidden states , 2010, Journal of Neuroscience Methods.

[54]  Li Fei-Fei,et al.  ImageNet: Constructing a large-scale image database , 2010 .

[55]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[56]  F. Rieke,et al.  Noise correlations improve response fidelity and stimulus encoding , 2010, Nature.

[57]  Michael J. Black,et al.  Decoding Complete Reach and Grasp Actions from Local Primary Motor Cortex Populations , 2010, The Journal of Neuroscience.

[58]  E. Rossi,et al.  The relationship between visual resolution and cone spacing in the human fovea , 2009, Nature Neuroscience.

[59]  Jonathon Shlens,et al.  Correlated firing among major ganglion cell types in primate retina , 2011, The Journal of physiology.

[60]  D. Ringach,et al.  Retinal origin of orientation maps in visual cortex , 2011, Nature Neuroscience.

[61]  Jack L. Gallant,et al.  Encoding and decoding in fMRI , 2011, NeuroImage.

[62]  Eero P. Simoncelli,et al.  Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics , 2011, Nature Neuroscience.

[63]  J. Victor,et al.  Temporal Encoding of Spatial Information during Active Visual Fixation , 2012, Current Biology.

[64]  S. Nirenberg,et al.  Determining the role of correlated firing in large populations of neurons using white noise and natural scene stimuli , 2012, Vision Research.

[65]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[66]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[67]  H. Sompolinsky,et al.  Computing Complex Visual Features with Retinal Spike Times , 2013, PloS one.

[68]  Ieee Staff,et al.  2015 7th International IEEE/EMBS Conference on Neural Engineering (NER) , 2015 .

[69]  Ronen Segev,et al.  A thesaurus for a neural population code , 2015, eLife.

[70]  F. Rieke,et al.  Broad Thorny Ganglion Cells: A Candidate for Visual Pursuit Error Signaling in the Primate Retina , 2015, The Journal of Neuroscience.

[71]  Eero P. Simoncelli,et al.  Mapping nonlinear receptive field structure in primate retina at single cone resolution , 2015, eLife.

[72]  Pierre Kornprobst,et al.  Rank Order Coding: a Retinal Information Decoding Strategy Revealed by Large-Scale Multielectrode Array Retinal Recordings , 2016, eNeuro.

[73]  Fred Rieke,et al.  Synaptic Rectification Controls Nonlinear Spatial Integration of Natural Visual Inputs , 2016, Neuron.

[74]  Maxwell H. Turner,et al.  Direction-Selective Circuits Shape Noise to Ensure a Precise Population Code , 2016, Neuron.

[75]  D. Palanker,et al.  Electronic approaches to restoration of sight , 2016, Reports on progress in physics. Physical Society.

[76]  Liam Paninski,et al.  Neural Networks for Efficient Bayesian Decoding of Natural Images from Retinal Neurons , 2017, bioRxiv.

[77]  Sara S. Patterson,et al.  Neural Mechanisms Mediating Motion Sensitivity in Parasol Ganglion Cells of the Primate Retina , 2018, Neuron.

[78]  Georg Martius,et al.  Nonlinear decoding of a complex movie from the mammalian retina , 2016, PLoS Comput. Biol..

[79]  Haim Sompolinsky,et al.  Functional diversity among sensory neurons from efficient coding principles , 2019, bioRxiv.

[80]  Nishal P. Shah,et al.  Unusual Physiological Properties of Smooth Monostratified Ganglion Cell Types in Primate Retina , 2019, Neuron.

[81]  David H Brainard,et al.  Simulation of visual perception and learning with a retinal prosthesis , 2018, bioRxiv.

[82]  Functional diversity among sensory neurons from efficient coding principles , 2019, bioRxiv.

[83]  Nishal P. Shah,et al.  Optimization of Electrical Stimulation for a High-Fidelity Artificial Retina , 2019, 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER).

[84]  Tiejun Huang,et al.  Reconstruction of Natural Visual Scenes from Neural Spikes with Deep Neural Networks , 2019, Neural Networks.

[85]  Joel Zylberberg,et al.  Ignoring correlated activity causes a failure of retinal population codes , 2020, Nature communications.

[86]  Liam Paninski,et al.  Nonlinear decoding of natural images from large-scale primate retinal ganglion recordings , 2020, bioRxiv.