Fast Calibrated Additive Quantile Regression
暂无分享,去创建一个
Yannig Goude | Matteo Fasiolo | Simon N. Wood | Margaux Zaffran | Raphaël Nedellec | S. Wood | Raphael Nedellec | Y. Goude | M. Fasiolo | Margaux Zaffran
[1] Naomi S. Altman,et al. Quantile regression , 2019, Nature Methods.
[2] S. Wood. Generalized Additive Models: An Introduction with R, Second Edition , 2017 .
[3] Yixiao Sun,et al. SMOOTHED ESTIMATING EQUATIONS FOR INSTRUMENTAL VARIABLES QUANTILE REGRESSION , 2016, Econometric Theory.
[4] P. Gaillard,et al. Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting , 2016 .
[5] Pier Giovanni Bissiri,et al. A general framework for updating belief distributions , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[6] S. Wood,et al. Smoothing Parameter and Model Selection for General Smooth Models , 2015, 1511.03864.
[7] Ryan Martin,et al. Scaling the Gibbs posterior credible regions , 2015 .
[8] Finn Lindgren,et al. Bayesian Spatial Modelling with R-INLA , 2015 .
[9] Hao Helen Zhang,et al. Variable selection for non‐parametric quantile regression via smoothing spline analysis of variance , 2013, Stat.
[10] Ulrich K. Müller. RISK OF BAYESIAN INFERENCE IN MISSPECIFIED MODELS, AND THE SANDWICH COVARIANCE MATRIX , 2013 .
[11] R. Ramamoorthi,et al. Posterior Consistency of Bayesian Quantile Regression Based on the Misspecified Asymmetric Laplace Density , 2013 .
[12] Yu Ryan Yue,et al. For a list of recent papers see the backpages of this paper. Bayesian Semiparametric Additive Quantile Regression , 2022 .
[13] Finn Lindgren,et al. Bayesian computing with INLA: New features , 2012, Comput. Stat. Data Anal..
[14] R. Vose,et al. An Overview of the Global Historical Climatology Network-Daily Database , 2012 .
[15] Martin Mächler,et al. Accurately Computing log(1 − exp( − | a | )) Assessed by the Rmpfr package , 2012 .
[16] S. Wood. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .
[17] Douglas W. Nychka,et al. Fast Nonparametric Quantile Regression With Arbitrary Smoothing Methods , 2011 .
[18] Yu Ryan Yue,et al. Bayesian inference for additive mixed quantile regression models , 2011, Comput. Stat. Data Anal..
[19] Torsten Hothorn,et al. Model-based Boosting 2.0 , 2010, J. Mach. Learn. Res..
[20] M. C. Jones,et al. Sinh-arcsinh distributions , 2009 .
[21] Gerda Claeskens,et al. Asymptotic properties of penalized spline estimators , 2009 .
[22] M. C. Jones. On a class of distributions with simple exponential tails , 2008 .
[23] M. C. Jones,et al. Improved double kernel local linear quantile regression , 2007 .
[24] L. Fahrmeir,et al. Some asymptotic results on generalized penalized spline smoothing , 2007 .
[25] Alan Y. Chiang,et al. Generalized Additive Models: An Introduction With R , 2007, Technometrics.
[26] Christian P. Robert,et al. The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .
[27] Ming-Yen Cheng,et al. Bandwidth Selection for Kernel Quantile Estimation , 2006 .
[28] R. Koenker. Quantile Regression: Name Index , 2005 .
[29] Chong Gu,et al. Smoothing spline Gaussian regression: more scalable computation via efficient approximation , 2004 .
[30] T. Kneib. S01.1: Penalized structured additive regression for space-time data , 2004 .
[31] B. Ripley,et al. Semiparametric Regression: Preface , 2003 .
[32] L. Fahrmeir,et al. PENALIZED STRUCTURED ADDITIVE REGRESSION FOR SPACE-TIME DATA: A BAYESIAN PERSPECTIVE , 2004 .
[33] Keming Yu,et al. Bayesian quantile regression , 2001 .
[34] S. Wood. Modelling and smoothing parameter estimation with multiple quadratic penalties , 2000 .
[35] Olvi L. Mangasarian,et al. Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..
[36] R. Tibshirani,et al. Generalized additive models for medical research , 1995, Statistical methods in medical research.
[37] B. Silverman,et al. Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .
[38] A. Azzalini. A class of distributions which includes the normal ones , 1985 .
[39] M. Falk. Relative Deficiency of Kernel Type Estimators of Quantiles , 1984 .
[40] R. Read. The Asymptotic Inadmissibility of the Sample Distribution Function , 1972 .