Bifacial transparent solid-state dye-sensitized solar cell with sputtered indium-tin-oxide counter electrode

[1]  J. Blocher Coating of glass by chemical vapor deposition , 1981 .

[2]  A. Berezin,et al.  Tin-doped In2O3 films deposited by r.f. sputtering , 1983 .

[3]  G. Harding,et al.  DC magnetron reactively sputtered indiumtinoxide films produced using argonoxygenhydrogen mixtures , 1990 .

[4]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[5]  Ladislav Kavan,et al.  Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis , 1995 .

[6]  M. P. D. Santos,et al.  Properties of indium tin oxide (ITO) films prepared by r.f. reactive magnetron sputtering at different pressures , 1997 .

[7]  K. Carl,et al.  Optimization of sputtered ITO films with respect to the oxygen partial pressure and substrate temperature , 1997 .

[8]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[9]  Ronald P. Howson,et al.  Use of the magnetron-sputtering technique for the control of the properties of indium tin oxide thin films , 1999 .

[10]  Udo Bach,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells , 2000 .

[11]  S. Forrest,et al.  Semitransparent cathodes for organic light emitting devices , 2000 .

[12]  S. Koh,et al.  Tin-doped indium oxide (ITO) film deposition by ion beam sputtering , 2001 .

[13]  M. Wong,et al.  DC sputtered indium-tin oxide transparent cathode for organic light-emitting diode , 2003 .

[14]  Juan Bisquert,et al.  Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells , 2004 .

[15]  G. Sung,et al.  Electrical and optical characteristics of ITO films by pulsed laser deposition using a 10 wt.% SnO2-doped In2O3 ceramic target , 2005 .

[16]  Gang Li,et al.  Accurate Measurement and Characterization of Organic Solar Cells , 2006 .

[17]  M. Green Third generation photovoltaics : advanced solar energy conversion , 2006 .

[18]  Laurence M. Peter,et al.  Characterization and Modeling of Dye-Sensitized Solar Cells , 2007, ECS Transactions.

[19]  L. Peter,et al.  Dye-sensitized nanocrystalline solar cells. , 2007, Physical chemistry chemical physics : PCCP.

[20]  Michael Grätzel,et al.  Electron and Hole Transport through Mesoporous TiO2 Infiltrated with Spiro‐MeOTAD , 2007 .

[21]  Klaus Meerholz,et al.  Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. , 2007, Nano letters.

[22]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[23]  A. Ulyashin,et al.  Deposition by magnetron sputtering and characterization of indium tin oxide thin films , 2007 .

[24]  Alberto Piqué,et al.  Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition , 2008 .

[25]  Paul W. M. Blom,et al.  Organic Tandem and Multi‐Junction Solar Cells , 2008 .

[26]  Jun-Ho Yum,et al.  Recent developments in solid-state dye-sensitized solar cells. , 2008, ChemSusChem.

[27]  Jean M. J. Fréchet,et al.  Increased light harvesting in dye-sensitized solar cells with energy relay dyes , 2009 .

[28]  Michael Grätzel,et al.  Pore‐Filling of Spiro‐OMeTAD in Solid‐State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance , 2009 .

[29]  Anders Hagfeldt,et al.  Efficient organic tandem cell combining a solid state dye-sensitized and a vacuum deposited bulk heterojunction solar cell , 2009 .

[30]  Jan Gilot,et al.  Optimizing Polymer Tandem Solar Cells , 2010, Advanced materials.

[31]  Yanhong Luo,et al.  Hybrid tandem solar cell for concurrently converting light and heat energy with utilization of full solar spectrum , 2010 .

[32]  M. Grätzel,et al.  High excitation transfer efficiency from energy relay dyes in dye-sensitized solar cells. , 2010, Nano letters.

[33]  Peng Wang,et al.  High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. , 2010, ACS nano.

[34]  B. Parkinson,et al.  Multiple Exciton Collection in a Sensitized Photovoltaic System , 2010, Science.

[35]  Srinivas Sista,et al.  High‐Efficiency Polymer Tandem Solar Cells with Three‐Terminal Structure , 2010, Advanced materials.

[36]  Ulrich Wiesner,et al.  Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. , 2011, Nano letters.

[37]  Peng Wang,et al.  An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. , 2011, Nano letters.

[38]  Shozo Yanagida,et al.  Strategy to improve the performance of dye-sensitized solar cells: Interface engineering principle , 2011 .

[39]  Yi Cui,et al.  Plasmonic Dye‐Sensitized Solar Cells , 2014 .

[40]  I. M. Dharmadasa,et al.  High-voltage (1.8 V) tandem solar cell system using a GaAs/AlXGa(1-X)As graded solar cell and dye-sensitised solar cells with organic dyes having different absorption spectra , 2011 .

[41]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[42]  P. Lekha,et al.  Efficiency enhancement in DSSC using metal nanoparticles: A size dependent study , 2012 .