Spintronics and chirality: spin selectivity in electron transport through chiral molecules.

Recent experiments have demonstrated that the electron transmission yield through chiral molecules depends on the electron spin orientation. This phenomenon has been termed the chiral-induced spin selectivity (CISS) effect, and it provides a challenge to theory and promise for organic molecule-based spintronic devices. This article reviews recent developments in our understanding of CISS. Different theoretical models have been used to describe the effect; however, they all presume an unusually large spin-orbit coupling in chiral molecules for the effect to display the magnitudes seen in experiments. A simplified model for an electron's transport through a chiral potential suggests that these large couplings can be manifested. Techniques for measuring spin-selective electron transport through molecules are overviewed, and some examples of recent experiments are described. Finally, we present results obtained by studying several systems, and we describe the possible application of the CISS effect for memory devices.

[1]  David Abend Giant Magneto Resistance Devices , 2016 .

[2]  S. Yochelis,et al.  Local light-induced magnetization using nanodots and chiral molecules. , 2014, Nano letters.

[3]  R. Naaman,et al.  Spin selectivity in electron transfer in photosystem I. , 2014, Angewandte Chemie.

[4]  Qing-feng Sun,et al.  Spin-dependent electron transport in protein-like single-helical molecules , 2014, Proceedings of the National Academy of Sciences.

[5]  W. Duley,et al.  Properties of specific electron helical states leads to spin filtering effect in dsDNA molecules , 2014 .

[6]  K. Awaga,et al.  Giant Magnetoresistance in a Molecular Thin Film as an Intrinsic Property , 2014 .

[7]  R. Naaman,et al.  A device for measuring spin selectivity in electron transfer. , 2013, Physical chemistry chemical physics : PCCP.

[8]  R. Naaman,et al.  Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane , 2013, Proceedings of the National Academy of Sciences.

[9]  Yossi Paltiel,et al.  A chiral-based magnetic memory device without a permanent magnet , 2013, Nature Communications.

[10]  Michael Galperin,et al.  Electrically Driven Spin Currents in DNA , 2013 .

[11]  A. Nitzan,et al.  Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling. , 2013, The Journal of chemical physics.

[12]  V. Loktev,et al.  Spin sensitive electron transmission through helical potentials , 2013, 1306.3758.

[13]  A. Karthikeyan,et al.  MAGNETORESISTANCE AND SPIN-FILTERING EFFICIENCY OF DNA-SANDWICHED FERROMAGNETIC NANOSTRUCTURES , 2013 .

[14]  G. Cuniberti,et al.  Modeling Spin Transport in Helical Fields: Derivation of an Effective Low-Dimensional Hamiltonian , 2013 .

[15]  D. Beratan,et al.  The single-molecule conductance and electrochemical electron-transfer rate are related by a power law. , 2013, ACS nano.

[16]  R. Naaman,et al.  Horizontal versus vertical charge and energy transfer in hybrid assemblies of semiconductor nanoparticles , 2012, Beilstein journal of nanotechnology.

[17]  Qing-feng Sun,et al.  Sequence-dependent spin-selective tunneling along double-stranded DNA , 2012, 1208.0239.

[18]  R Naaman,et al.  Chiral-Induced Spin Selectivity Effect. , 2012, The journal of physical chemistry letters.

[19]  Z. Vager,et al.  Spin order without magnetism – a new phase of spontaneously broken symmetry in condensed matter , 2012 .

[20]  R. Arita,et al.  Magneto-orbital effect without spin-orbit interactions in a noncentrosymmetric zeolite-templated carbon structure , 2012, 1205.2965.

[21]  M. Ratner,et al.  Chiral molecular films as electron polarizers and polarization modulators , 2012, 1202.3507.

[22]  Qing-feng Sun,et al.  Spin-selective transport of electrons in DNA double helix. , 2012, Physical review letters.

[23]  G. Cuniberti,et al.  Spin selective transport through helical molecular systems , 2011, 1110.0354.

[24]  Y. Otani,et al.  Spin relaxation mechanism in silver nanowires covered with MgO protection layer , 2011, 1104.3718.

[25]  Sidney R. Cohen,et al.  Spin specific electron conduction through DNA oligomers. , 2011, Nano letters.

[26]  R. Naaman,et al.  Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA , 2011, Science.

[27]  E. Beaurepaire,et al.  Giant magnetoresistance through a single molecule. , 2011, Nature nanotechnology.

[28]  K. Choy,et al.  Size effects and origin of easy-axis in nickel nanowire arrays , 2011 .

[29]  D. Ralph,et al.  Time-resolved measurement of spin-transfer-driven ferromagnetic resonance and spin torque in magnetic tunnel junctions , 2010, 1010.1777.

[30]  G. Montambaux,et al.  Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models , 2010, 1006.5632.

[31]  R. Naaman,et al.  Cooperative Electronic and Magnetic Properties of Self-Assembled Monolayers , 2010 .

[32]  S. Blügel,et al.  Design of the local spin polarization at the organic-ferromagnetic interface. , 2010, Physical review letters.

[33]  Greg Szulczewski,et al.  A spin of their own. , 2009, Nature materials.

[34]  M. Ratner,et al.  Chiral electron transport: scattering through helical potentials. , 2009, The Journal of chemical physics.

[35]  J. Katine,et al.  Device implications of spin-transfer torques , 2008 .

[36]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[37]  Yiming Huai,et al.  Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects , 2008 .

[38]  Zachary Barnett,et al.  Giant Magnetoresistance , 2008 .

[39]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[40]  W. Wenzel,et al.  Charge-switchable molecular magnet and spin blockade of tunneling , 2007 .

[41]  R. Österbacka,et al.  Application of regioregular polythiophene in spintronic devices: Effect of interface , 2006 .

[42]  R. Naaman,et al.  Molecular chirality and charge transfer through self-assembled scaffold monolayers. , 2006, The journal of physical chemistry. B.

[43]  William J. Gallagher,et al.  Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip , 2006, IBM J. Res. Dev..

[44]  Iwao Ojima,et al.  Catalytic Asymmetric Synthesis: Ojima/Asymmetric Synthesis , 2005 .

[45]  G. Veeraraghavan,et al.  Large magnetoresistance at room temperature in semiconducting polymer sandwich devices , 2004, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[46]  Sidney R. Cohen,et al.  Electrical properties of short DNA oligomers characterized by conducting atomic force microscopy , 2004 .

[47]  G. Güntherodt,et al.  Spin-resolved photoelectron spectroscopy of the MgO/Fe(110) system , 2004, cond-mat/0404423.

[48]  Di Wu,et al.  Giant magnetoresistance in organic spin-valves , 2004, Nature.

[49]  D. Awschalom,et al.  Coherent Spin Transfer Between Molecularly Bridged Quantum Dots , 2003, Science.

[50]  E. Jacobsen,et al.  Privileged Chiral Catalysts , 2003, Science.

[51]  G. Güntherodt,et al.  Growth and spin-resolved photoemission spectroscopy of the epitaxial α-Al2O3/Fe(110) system , 2002 .

[52]  G. Rikken,et al.  Magneto-chiral anisotropy of the free electron on a helix , 2002 .

[53]  M. Hill,et al.  Charge transport through a molecular π-stack: double helical DNA , 2002 .

[54]  R. Naaman,et al.  Magnetization of chiral monolayers of polypeptide: a possible source of magnetism in some biological membranes. , 2002, Angewandte Chemie.

[55]  Bernd Giese,et al.  Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling , 2001, Nature.

[56]  R. Pisarev,et al.  Sub-Picosecond Dynamics of the Photo-Induced Magneto-Optical Kerr Effect in CdTe at Room Temperature , 2001 .

[57]  S. Denmark,et al.  Catalytic asymmetric synthesis. , 2000, Accounts of chemical research.

[58]  D. Awschalom,et al.  Coherent transfer of spin through a semiconductor heterointerface. , 2000, Physical review letters.

[59]  Jagadeesh S. Moodera,et al.  Spin polarized tunneling in ferromagnetic junctions , 1999 .

[60]  R. Naaman,et al.  Asymmetric scattering of polarized electrons by organized organic films of chiral molecules , 1999, Science.

[61]  E. Jacobsen,et al.  Comprehensive Asymmetric Catalysis I–III , 1999 .

[62]  Eric N. Jacobsen,et al.  Comprehensive asymmetric catalysis , 1999 .

[63]  D. Awschalom,et al.  Lateral drag of spin coherence in gallium arsenide , 1999, Nature.

[64]  R. Bentley From Optical Activity in Quartz to Chiral Drugs: Molecular Handedness in Biology and Medicine , 2015, Perspectives in biology and medicine.

[65]  Aronov,et al.  Spin-orbit Berry phase in conducting rings. , 1993, Physical review letters.

[66]  Kessler,et al.  Precision measurement of the Sherman asymmetry function for electron scattering from gold. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[67]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[68]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[69]  Büttiker,et al.  Absence of backscattering in the quantum Hall effect in multiprobe conductors. , 1988, Physical review. B, Condensed matter.

[70]  G. Güntherodt,et al.  Spin-resolved photoemission study of in situ grown epitaxial Fe layers on W(110) , 1986 .

[71]  D. Pescia,et al.  Band-Structure Investigation of Gold by Spin-Polarized Photoemission , 1981 .

[72]  Y. Yafet g Factors and Spin-Lattice Relaxation of Conduction Electrons , 1963 .

[73]  R. J. Elliott,et al.  Theory of the Effect of Spin-Orbit Coupling on Magnetic Resonance in Some Semiconductors , 1954 .

[74]  H. Massey,et al.  Polarisation of Electrons by Double Scattering , 1940, Nature.

[75]  N. Mott The Scattering of Fast Electrons by Atomic Nuclei , 1929 .

[76]  John Kerr Ll.D. XLIII. On rotation of the plane of polarization by reflection from the pole of a magnet , 1877 .