A Diffusion-Based Solution Technique for Certain Schrödinger Equation Dynamical Systems
暂无分享,去创建一个
[1] William M. McEneaney,et al. The Principle of Least Action and Fundamental Solutions of Mass-Spring and N-Body Two-Point Boundary Value Problems , 2015, SIAM J. Control. Optim..
[2] Jan Ubøe. Complex valued multiparameter stochastic integrals , 1995 .
[3] V. Kolokoltsov. Semiclassical Analysis for Diffusions and Stochastic Processes , 2000 .
[4] A. Krener. Reciprocal diffusions in flat space , 1997 .
[5] S. Takagi. Quantum Dynamics and Non-Inertial Frames of Reference. I Generality , 1991 .
[6] W. McEneaney. A Stationary-Action Control Representation for the Dequantized Schrödinger Equation , 2016 .
[7] W. McEneaney. A Stochastic Control Verification Theorem for the Dequantized Schrödinger Equation Not Requiring a Duration Restriction , 2019 .
[8] Edward Nelson. Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .
[9] W. Fleming. Stochastic calculus of variations and mechanics , 1983 .
[10] Christian Perret,et al. The stability of numerical simulations of complex stochastic differential equations , 2010 .
[11] G. Litvinov. Maslov dequantization, idempotent and tropical mathematics: A brief introduction , 2005, math/0507014.
[12] Halim Doss. Sur une Resolution Stochastique de l'Equation de Schrödinger à Coefficients Analytiques , 1980 .
[13] V. P. Maslov,et al. On a new superposition principle for optimization problem , 1986 .
[14] R. Range. Holomorphic Functions and Integral Representations in Several Complex Variables , 1998 .
[15] R. Azencott,et al. L'Equation de Schrödinger quand h tend vers zero; une approche probabiliste , 1985 .
[16] William M. McEneaney,et al. Staticization, its dynamic program and solution propagation , 2017, Autom..
[17] R. Feynman,et al. Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .