The fluorescent protein palette: tools for cellular imaging.

This critical review provides an overview of the continually expanding family of fluorescent proteins (FPs) that have become essential tools for studies of cell biology and physiology. Here, we describe the characteristics of the genetically encoded fluorescent markers that now span the visible spectrum from deep blue to deep red. We identify some of the novel FPs that have unusual characteristics that make them useful reporters of the dynamic behaviors of proteins inside cells, and describe how many different optical methods can be combined with the FPs to provide quantitative measurements in living systems (227 references).

[1]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[2]  R. Heim,et al.  Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. , 1999, Methods in cell biology.

[3]  D. Shcherbo,et al.  Bright far-red fluorescent protein for whole-body imaging , 2007, Nature Methods.

[4]  Konstantin A Lukyanov,et al.  Hetero-oligomeric tagging diminishes non-specific aggregation of target proteins fused with Anthozoa fluorescent proteins. , 2003, The Biochemical journal.

[5]  R. Tsien,et al.  A monomeric red fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Konstantin A Lukyanov,et al.  Fluorescent proteins as a toolkit for in vivo imaging. , 2005, Trends in biotechnology.

[7]  M. Zimmer,et al.  Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. , 2002, Chemical reviews.

[8]  Peter Dedecker,et al.  Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  George H. Patterson,et al.  A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells , 2002, Science.

[10]  Walter Kolch,et al.  High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. , 2007, Biophysical chemistry.

[11]  S. Lukyanov,et al.  GFP‐like chromoproteins as a source of far‐red fluorescent proteins , 2001, FEBS letters.

[12]  Robert E Campbell,et al.  Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging , 2008 .

[13]  Michael A. Mancini,et al.  Glowing Genes: A Revolution In Biotechnology , 2005 .

[14]  V. Verkhusha,et al.  The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins , 2004, Nature Biotechnology.

[15]  Atsushi Miyawaki,et al.  Green fluorescent protein-like proteins in reef Anthozoa animals. , 2002, Cell structure and function.

[16]  W. Webb,et al.  Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. , 1976, Biophysical journal.

[17]  Richard N. Day,et al.  Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. , 2001, Methods.

[18]  Maarten Merkx,et al.  Enhanced Sensitivity of FRET‐Based Protease Sensors by Redesign of the GFP Dimerization Interface , 2007, Chembiochem : a European journal of chemical biology.

[19]  Borivoj Vojnovic,et al.  A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  E Gratton,et al.  Fluorescence lifetime imaging techniques for microscopy. , 1998, Methods in cell biology.

[21]  J. Lippincott-Schwartz,et al.  Development and Use of Fluorescent Protein Markers in Living Cells , 2003, Science.

[22]  M. J. Cormier,et al.  Primary structure of the Aequorea victoria green-fluorescent protein. , 1992, Gene.

[23]  Marc Tramier,et al.  Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells , 2006, Microscopy research and technique.

[24]  J. W. Hastings,et al.  Biochemistry of the bioluminescence of colonial hydroids and other coelenterates , 1971, Journal of cellular physiology.

[25]  D. Piston,et al.  Fluorescent protein FRET: the good, the bad and the ugly. , 2007, Trends in biochemical sciences.

[26]  G. Patterson,et al.  Improved Fluorescence and Dual Color Detection with Enhanced Blue and Green Variants of the Green Fluorescent Protein* , 1998, The Journal of Biological Chemistry.

[27]  Marco A Mena,et al.  Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library , 2006, Nature Biotechnology.

[28]  Alexey Khodjakov,et al.  Imaging the division process in living tissue culture cells. , 2006, Methods.

[29]  O. Shimomura,et al.  Intermolecular energy transfer in the bioluminescent system of Aequorea. , 1974, Biochemistry.

[30]  T M Jovin,et al.  Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: fluorescent-labeled protein kinase C beta I. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Peter Dedecker,et al.  Fast and reversible photoswitching of the fluorescent protein dronpa as evidenced by fluorescence correlation spectroscopy. , 2006, Biophysical journal.

[32]  Takeharu Nagai,et al.  Engineering fluorescent proteins. , 2005, Advances in biochemical engineering/biotechnology.

[33]  R. Tsien,et al.  Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer , 1996, Current Biology.

[34]  Atsushi Miyawaki,et al.  Semi‐rational engineering of a coral fluorescent protein into an efficient highlighter , 2005, EMBO reports.

[35]  R. Tsien,et al.  Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells , 2002, Science.

[36]  J. Wiedenmann,et al.  EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Phillips,et al.  The molecular structure of green fluorescent protein , 1996, Nature Biotechnology.

[38]  Benjamin S Glick,et al.  A noncytotoxic DsRed variant for whole-cell labeling , 2008, Nature Methods.

[39]  Alexander Kamb,et al.  Stable expression of Anthozoa fluorescent proteins in mammalian cells. , 2002, Cytometry.

[40]  B. Glick,et al.  Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) , 2002, Nature Biotechnology.

[41]  G Ulrich Nienhaus,et al.  Photodynamics of red fluorescent proteins studied by fluorescence correlation spectroscopy. , 2004, Biophysical journal.

[42]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Andrey Yu Gorokhovatsky,et al.  Traditional GFP-type cyclization and unexpected fragmentation site in a purple chromoprotein from Anemonia sulcata, asFP595. , 2004, Biochemistry.

[44]  Atsushi Miyawaki,et al.  mKikGR, a Monomeric Photoswitchable Fluorescent Protein , 2008, PloS one.

[45]  S J Remington,et al.  Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. , 1998, Structure.

[46]  Robert E Campbell,et al.  Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. , 2007, Biochemistry.

[47]  Michael Schaefer,et al.  Reversible photobleaching of enhanced green fluorescent proteins. , 2005, Biochemistry.

[48]  Michael Z. Lin,et al.  Improving the photostability of bright monomeric orange and red fluorescent proteins , 2008, Nature Methods.

[49]  A Miyawaki,et al.  Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer. , 2001, Biochemistry.

[50]  Andrea H. Brand,et al.  Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins , 2002, Nature Cell Biology.

[51]  R. Tsien,et al.  Evolution of new nonantibody proteins via iterative somatic hypermutation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Christian Eggeling,et al.  1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. , 2007, The Biochemical journal.

[53]  S. Lukyanov,et al.  Natural Animal Coloration Can Be Determined by a Nonfluorescent Green Fluorescent Protein Homolog* , 2000, The Journal of Biological Chemistry.

[54]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[55]  S. Remington Fluorescent proteins: maturation, photochemistry and photophysics. , 2006, Current opinion in structural biology.

[56]  Steven S. Vogel,et al.  Cerulean, Venus, and VenusY67C FRET reference standards. , 2006, Biophysical journal.

[57]  Richard A. Stein,et al.  Molecular Imaging: FRET Microscopy and Spectroscopy, A. Periasamy, R.N. Day (Eds.). Oxford University Press Inc. (2005), Price GB £58.00, ISBN: 0-19-517720-6 , 2006 .

[58]  Steven S Vogel,et al.  Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. , 2005, Biophysical journal.

[59]  M. Davidson,et al.  Advances in fluorescent protein technology , 2011, Journal of Cell Science.

[60]  Vladislav V Verkhusha,et al.  Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. , 2009, Nature chemical biology.

[61]  O. Shimomura,et al.  Structure of the chromophore of Aequorea green fluorescent protein , 1979 .

[62]  Roger Y. Tsien,et al.  Crystal Structure of the Aequorea victoria Green Fluorescent Protein , 1996, Science.

[63]  Guy Cox,et al.  Fluorescent pigments in corals are photoprotective , 2000, Nature.

[64]  P. Bastiaens,et al.  Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. , 1999, Trends in cell biology.

[65]  Robert D. Goldman,et al.  Live Cell Imaging: A Laboratory Manual , 2004 .

[66]  Anya Salih,et al.  It's cheap to be colorful , 2007, The FEBS journal.

[67]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Ryohei Yasuda,et al.  Highly sensitive and quantitative FRET–FLIM imaging in single dendritic spines using improved non-radiative YFP , 2008, Brain cell biology.

[69]  G. Patterson,et al.  Förster distances between green fluorescent protein pairs. , 2000, Analytical biochemistry.

[70]  Atsushi Miyawaki,et al.  Fluorescence imaging using a fluorescent protein with a large Stokes shift. , 2008, Methods.

[71]  Konstantin A Lukyanov,et al.  Photoswitchable cyan fluorescent protein for protein tracking , 2004, Nature Biotechnology.

[72]  M. Ikura,et al.  The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. , 2001, Current opinion in structural biology.

[73]  G Ulrich Nienhaus,et al.  Optimized and far-red-emitting variants of fluorescent protein eqFP611. , 2008, Chemistry & biology.

[74]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[75]  T. Terwilliger,et al.  Engineering and characterization of a superfolder green fluorescent protein , 2006, Nature Biotechnology.

[76]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[77]  Peter Dedecker,et al.  A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. , 2007, Journal of the American Chemical Society.

[78]  V. Verkhusha,et al.  Photoactivatable fluorescent proteins , 2005, Nature Reviews Molecular Cell Biology.

[79]  S. Remington,et al.  Structure and mechanism of the photoactivatable green fluorescent protein. , 2009, Journal of the American Chemical Society.

[80]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[81]  Christian Eggeling,et al.  Structure and mechanism of the reversible photoswitch of a fluorescent protein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Robert E Campbell,et al.  Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors , 2008, Nature Methods.

[83]  Martin Chalfie,et al.  Green fluorescent protein : properties, applications, and protocols , 2005 .

[84]  S J Remington,et al.  Mechanism and Cellular Applications of a Green Fluorescent Protein-based Halide Sensor* , 2000, The Journal of Biological Chemistry.

[85]  Konstantin A Lukyanov,et al.  Family of the green fluorescent protein: journey to the end of the rainbow. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[86]  Christian Eggeling,et al.  Structural basis for reversible photoswitching in Dronpa , 2007, Proceedings of the National Academy of Sciences.

[87]  Mark Prescott,et al.  The production, purification and crystallization of a pocilloporin pigment from a reef-forming coral. , 2003, Acta crystallographica. Section D, Biological crystallography.

[88]  R. Mitra,et al.  Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. , 1996, Gene.

[89]  Oliver Griesbeck,et al.  Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP , 2003, BMC biotechnology.

[90]  Michael W. Davidson,et al.  Photoconversion in orange and red fluorescent proteins , 2009, Nature Methods.

[91]  Roger Y. Tsien,et al.  Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo , 1996, Current Biology.

[92]  W. E. Moerner,et al.  The Fluorescence Dynamics of Single Molecules of Green Fluorescent Protein , 1999 .

[93]  J. Lippincott-Schwartz,et al.  Studying protein dynamics in living cells , 2001, Nature Reviews Molecular Cell Biology.

[94]  Patrick S Daugherty,et al.  Evolutionary optimization of fluorescent proteins for intracellular FRET , 2005, Nature Biotechnology.

[95]  Konstantin A Lukyanov,et al.  Color transitions in coral's fluorescent proteins by site-directed mutagenesis , 2001, BMC Biochemistry.

[96]  Tom Misteli,et al.  Kinetic modelling approaches to in vivo imaging , 2001, Nature Reviews Molecular Cell Biology.

[97]  R. Yasuda Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy , 2006, Current Opinion in Neurobiology.

[98]  Christian Eggeling,et al.  Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy , 2008, Nature Biotechnology.

[99]  Markus Rehm,et al.  Single-cell Fluorescence Resonance Energy Transfer Analysis Demonstrates That Caspase Activation during Apoptosis Is a Rapid Process , 2002, The Journal of Biological Chemistry.

[100]  Takeharu Nagai,et al.  Shift anticipated in DNA microarray market , 2002, Nature Biotechnology.

[101]  Konstantin A Lukyanov,et al.  Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. , 2005, The Biochemical journal.

[102]  Christian Eggeling,et al.  Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. , 2008, Biophysical journal.

[103]  Richard N. Day,et al.  Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells. , 1996, Gene.

[104]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[105]  W. M. Westler,et al.  Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. , 1993, Biochemistry.

[106]  R. Tsien,et al.  Reducing the Environmental Sensitivity of Yellow Fluorescent Protein , 2001, The Journal of Biological Chemistry.

[107]  J. Wiehler,et al.  Mutants of Discosoma red fluorescent protein with a GFP‐like chromophore , 2001, FEBS letters.

[108]  Konstantin A Lukyanov,et al.  A strategy for the generation of non‐aggregating mutants of Anthozoa fluorescent proteins , 2002, FEBS letters.

[109]  S J Remington,et al.  Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[110]  O. Shimomura,et al.  Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. , 1962, Journal of cellular and comparative physiology.

[111]  Nathan C Shaner,et al.  Novel chromophores and buried charges control color in mFruits. , 2006, Biochemistry.

[112]  Mark A Rizzo,et al.  An improved cyan fluorescent protein variant useful for FRET , 2004, Nature Biotechnology.

[113]  Joachim Goedhart,et al.  Bright monomeric red fluorescent protein with an extended fluorescence lifetime , 2007, Nature Methods.

[114]  Atsushi Miyawaki,et al.  Fluorescent proteins in a new light , 2004, Nature Biotechnology.

[115]  Ammasi Periasamy,et al.  Characterization of an improved donor fluorescent protein for Forster resonance energy transfer microscopy. , 2008, Journal of biomedical optics.

[116]  K. Lukyanov,et al.  Diversity and evolution of the green fluorescent protein family , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[117]  A. Yamaguchi,et al.  A novel yellowish-green fluorescent protein from the marine copepod, Chiridius poppei, and its use as a reporter protein in HeLa cells. , 2006, Gene.

[118]  Atsushi Miyawaki,et al.  Innovations in the Imaging of Brain Functions using Fluorescent Proteins , 2005, Neuron.

[119]  Patrick S Daugherty,et al.  Intracellular protein interaction mapping with FRET hybrids , 2006, Proceedings of the National Academy of Sciences.

[120]  J. Wiedenmann,et al.  Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[121]  A. Miyawaki,et al.  A Green-emitting Fluorescent Protein from Galaxeidae Coral and Its Monomeric Version for Use in Fluorescent Labeling* , 2003, Journal of Biological Chemistry.

[122]  R Y Tsien,et al.  Understanding, improving and using green fluorescent proteins. , 1995, Trends in biochemical sciences.

[123]  G. Ulrich Nienhaus,et al.  Photoconvertible Fluorescent Protein EosFP: Biophysical Properties and Cell Biology Applications , 2006, Photochemistry and photobiology.

[124]  Atsushi Miyawaki,et al.  A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy , 2006, Nature Biotechnology.

[125]  Takeharu Nagai,et al.  Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein , 2008, Nature Methods.

[126]  R. Day,et al.  Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. , 1998, Molecular endocrinology.

[127]  Matthias Weiss,et al.  Challenges and Artifacts in Quantitative Photobleaching Experiments , 2004, Traffic.

[128]  Shoichi Matsuo,et al.  Hd3a Protein Is a Mobile Flowering Signal in Rice , 2007, Science.

[129]  Mark Prescott,et al.  The 2.0-Å Crystal Structure of eqFP611, a Far Red Fluorescent Protein from the Sea Anemone Entacmaea quadricolor* , 2003, Journal of Biological Chemistry.

[130]  F. Tsuji,et al.  Aequorea green fluorescent protein , 1994, FEBS letters.

[131]  Atsushi Miyawaki,et al.  Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. , 2003, Molecular cell.

[132]  M. Field,et al.  Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations , 2008, Proceedings of the National Academy of Sciences.

[133]  Victoria J Allan,et al.  Light Microscopy Techniques for Live Cell Imaging , 2003, Science.

[134]  M. J. Cormier,et al.  Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. , 1985, Biochemical and biophysical research communications.

[135]  Richard N. Day,et al.  Spying on the hidden lives of proteins , 1999, Nature Biotechnology.

[136]  G. Ulrich Nienhaus,et al.  mRuby, a Bright Monomeric Red Fluorescent Protein for Labeling of Subcellular Structures , 2009, PloS one.

[137]  George H Patterson,et al.  Selective photolabeling of proteins using photoactivatable GFP. , 2004, Methods.

[138]  Christian Eggeling,et al.  Fluorescence Nanoscopy in Whole Cells by Asynchronous Localization of Photoswitching Emitters , 2007, Biophysical journal.

[139]  Steve M. Potter Vital imaging: Two photons are better than one , 1996, Current Biology.

[140]  K K Baldridge,et al.  The structure of the chromophore within DsRed, a red fluorescent protein from coral. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[141]  Kristin L. Hazelwood,et al.  Far-red fluorescent tags for protein imaging in living tissues. , 2009, The Biochemical journal.

[142]  Konstantin A Lukyanov,et al.  zFP538, a yellow-fluorescent protein from Zoanthus, contains a novel three-ring chromophore. , 2005, Biochemistry.

[143]  S J Remington,et al.  Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[144]  A. Ting,et al.  Fluorescent probes for super-resolution imaging in living cells , 2008, Nature Reviews Molecular Cell Biology.

[145]  M. Matz,et al.  Adaptive Evolution of Multicolored Fluorescent Proteins in Reef-Building Corals , 2006, Journal of Molecular Evolution.

[146]  K. Lukyanov,et al.  A Natural Fluorescent Protein That Changes Its Fluorescence Color during Maturation , 2003, Russian Journal of Bioorganic Chemistry.

[147]  Oliver Holub,et al.  Fluorescence lifetime-resolved imaging: measuring lifetimes in an image. , 2003, Methods in enzymology.

[148]  W. Webb,et al.  Dynamics of fluorescence marker concentration as a probe of mobility. , 1976, Biophysical journal.

[149]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[150]  Robert E Campbell,et al.  Structural basis for reversible photobleaching of a green fluorescent protein homologue , 2007, Proceedings of the National Academy of Sciences.

[151]  Konstantin A Lukyanov,et al.  Far-red fluorescent tag for protein labelling. , 2002, The Biochemical journal.

[152]  Robert E Campbell,et al.  Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. , 2006, The Biochemical journal.

[153]  Roger Y Tsien,et al.  Molecular biology and mutation of green fluorescent protein. , 2005, Methods of biochemical analysis.

[154]  V. Verkhusha,et al.  Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light , 2006, Nature Biotechnology.

[155]  T M Jovin,et al.  Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. , 1996, The EMBO journal.

[156]  Marc Tramier,et al.  Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells. , 2002, Biophysical journal.

[157]  Herwig Baier,et al.  Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. , 2007, Developmental biology.

[158]  G Ulrich Nienhaus,et al.  A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[159]  Mary E. Dickinson,et al.  Technicolour transgenics: imaging tools for functional genomics in the mouse , 2003, Nature Reviews Genetics.

[160]  George J. Augustine,et al.  A Genetically Encoded Ratiometric Indicator for Chloride Capturing Chloride Transients in Cultured Hippocampal Neurons , 2000, Neuron.

[161]  R Y Tsien,et al.  Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[162]  A Miyawaki,et al.  Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[163]  A. Kenworthy,et al.  Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. , 2001, Methods.

[164]  Maïté Coppey-Moisan,et al.  Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments , 2005, Nature Methods.

[165]  M. Heilemann,et al.  Photoswitches: Key molecules for subdiffraction‐resolution fluorescence imaging and molecular quantification , 2009 .

[166]  W. Stemmer,et al.  Improved Green Fluorescent Protein by Molecular Evolution Using DNA Shuffling , 1996, Nature Biotechnology.

[167]  M. Tramier,et al.  Picosecond time‐resolved microspectrofluorometry in live cells exemplified by complex fluorescence dynamics of popular probes ethidium and cyan fluorescent protein , 2004, Journal of microscopy.

[168]  Roger Y. Tsien,et al.  Improved green fluorescence , 1995, Nature.

[169]  Takeaki Ozawa,et al.  Methods for imaging and analyses of intracellular organelles using fluorescent and luminescent proteins. , 2007, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[170]  Konstantin A Lukyanov,et al.  A colourless green fluorescent protein homologue from the non-fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants. , 2003, The Biochemical journal.

[171]  V. I. Martynov,et al.  Photoconversion of the Chromophore of a Fluorescent Protein from Dendronephthya sp. , 2004, Biochemistry (Moscow).

[172]  D. Zacharias,et al.  Sticky Caveats in an Otherwise Glowing Report: Oligomerizing Fluorescent Proteins and Their Use in Cell Biology , 2002, Science's STKE.

[173]  A. Miyawaki,et al.  An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[174]  R. Heim,et al.  Using GFP in FRET-based applications. , 1999, Trends in cell biology.

[175]  Atsushi Miyawaki,et al.  Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice , 2008, Proceedings of the National Academy of Sciences.

[176]  Takeharu Nagai,et al.  An ultramarine fluorescent protein with increased photostability and pH insensitivity , 2009, Nature Methods.

[177]  R. Tsien,et al.  On/off blinking and switching behaviour of single molecules of green fluorescent protein , 1997, Nature.

[178]  Joachim Goedhart,et al.  UvA-DARE ( Digital Academic Repository ) Optimization of fluorescent proteins for novel quantitative multiparameter microscopy approaches , 2007 .

[179]  V. Verkhusha,et al.  Denaturation and partial renaturation of a tightly tetramerized DsRed protein under mildly acidic conditions , 2000, FEBS letters.

[180]  S. Lukyanov,et al.  Fluorescent proteins from nonbioluminescent Anthozoa species , 1999, Nature Biotechnology.

[181]  H. Erickson,et al.  An experimental study of GFP‐based FRET, with application to intrinsically unstructured proteins , 2007, Protein science : a publication of the Protein Society.

[182]  C. N. Stewart,et al.  Go with the glow: fluorescent proteins to light transgenic organisms. , 2006, Trends in biotechnology.

[183]  A. Miyawaki,et al.  Regulated Fast Nucleocytoplasmic Shuttling Observed by Reversible Protein Highlighting , 2004, Science.

[184]  S. Boxer,et al.  Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[185]  Konstantin A Lukyanov,et al.  Using photoactivatable fluorescent protein Dendra2 to track protein movement. , 2007, BioTechniques.

[186]  Fabio Beltram,et al.  Development of a novel GFP-based ratiometric excitation and emission pH indicator for intracellular studies. , 2006, Biophysical journal.

[187]  Jun Zhang,et al.  Bioluminescence of Aequorea macrodactyla, a Common Jellyfish Species in the East China Sea , 2002, Marine Biotechnology.

[188]  M. J. Cormier,et al.  Studies on the bioluminescence of Renilla reniformis. III. Some biochemical comparisons of the system to other Renilla species and determinations of the spectral energy distributions. , 1962, Biochimica et biophysica acta.

[189]  W W Ward,et al.  An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green-fluorescent protein. , 1979, The Journal of biological chemistry.

[190]  Gaudenz Danuser,et al.  FRET or no FRET: a quantitative comparison. , 2003, Biophysical journal.

[191]  B. Vojnovic,et al.  Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. , 2005, Biophysical journal.

[192]  Vladislav V Verkhusha,et al.  Conversion of the monomeric red fluorescent protein into a photoactivatable probe. , 2005, Chemistry & biology.

[193]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[194]  B. Herman,et al.  Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. , 1998, Biophysical journal.

[195]  Jin Zhang,et al.  Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. , 2006, Biochemical and biophysical research communications.

[196]  A. Persechini,et al.  Detection in Living Cells of Ca2+-dependent Changes in the Fluorescence Emission of an Indicator Composed of Two Green Fluorescent Protein Variants Linked by a Calmodulin-binding Sequence , 1997, The Journal of Biological Chemistry.

[197]  Richard N. Day,et al.  Fluorescent protein spectra. , 2001, Journal of cell science.

[198]  Takeharu Nagai,et al.  Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. , 2004, The Biochemical journal.

[199]  A Miyawaki,et al.  Dynamic and quantitative Ca2+ measurements using improved cameleons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[200]  Richard N. Day,et al.  Visualizing protein interactions in living cells using digitized GFP imaging and FRET microscopy. , 1999, Methods in cell biology.

[201]  Y. Liu,et al.  Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. , 2001, Biophysical journal.

[202]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[203]  G Ulrich Nienhaus,et al.  Red fluorescent protein eqFP611 and its genetically engineered dimeric variants. , 2005, Journal of biomedical optics.

[204]  Dmitriy M Chudakov,et al.  Conversion of red fluorescent protein into a bright blue probe. , 2008, Chemistry & biology.

[205]  Kristin L. Hazelwood,et al.  A bright and photostable photoconvertible fluorescent protein for fusion tags , 2009, Nature Methods.

[206]  M. Falk,et al.  Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed‐tagged proteins1 , 2001, FEBS letters.

[207]  Atsushi Miyawaki,et al.  Structural characterization of a thiazoline-containing chromophore in an orange fluorescent protein, monomeric Kusabira Orange. , 2008, Biochemistry.

[208]  Joachim Goedhart,et al.  Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. , 2007, Biochemistry.

[209]  A. Murakami,et al.  Endogenous Green Fluorescent Protein (GFP) in Amphioxus , 2007, The Biological Bulletin.

[210]  Horst Wallrabe,et al.  Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. , 2003, Methods.

[211]  R. Tsien,et al.  Creating new fluorescent probes for cell biology , 2002, Nature Reviews Molecular Cell Biology.

[212]  R. Tsien,et al.  Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. , 2000, Methods in enzymology.

[213]  Atsushi Miyawaki,et al.  Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression , 2008, Cell.

[214]  S. Lukyanov,et al.  GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. , 2004, Molecular biology and evolution.

[215]  Irving L. Weissman,et al.  "Fluorescent timer": protein that changes color with time. , 2000, Science.

[216]  G. Patterson,et al.  Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. , 1997, Biophysical journal.

[217]  Suliana Manley,et al.  Photoactivatable mCherry for high-resolution two-color fluorescence microscopy , 2009, Nature Methods.

[218]  Horst Wallrabe,et al.  One- and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes. , 2003, Journal of biomedical optics.