Extraordinary 13C enrichment of diether lipids at the Lost City Hydrothermal Field indicates a carbon-limited ecosystem

[1]  D. Kelley,et al.  Serpentinization of Oceanic Peridotites: Implications for Geochemical Cycles and Biological Activity , 2013 .

[2]  Satoshi Nakagawa,et al.  Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation , 2008, Proceedings of the National Academy of Sciences.

[3]  Anne-Kristin Kaster,et al.  Methanogenic archaea: ecologically relevant differences in energy conservation , 2008, Nature Reviews Microbiology.

[4]  R. Summons,et al.  Stable carbon isotope fractionation between substrates and products of Methanosarcina barkeri , 2008 .

[5]  Deborah S. Kelley,et al.  Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field , 2008, Science.

[6]  H. Niemann,et al.  Occurrence of unusual steroids and hopanoids derived from aerobic methanotrophs at an active marine mud volcano , 2008 .

[7]  S. Petersen,et al.  Biosignatures present in a hydrothermal massive sulfide from the Mid‐Atlantic Ridge , 2007 .

[8]  W. Martin,et al.  On the origin of biochemistry at an alkaline hydrothermal vent , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  Jacqueline A. Servin,et al.  Evidence for a gram-positive, eubacterial root of the tree of life. , 2007, Molecular biology and evolution.

[10]  Rudolf Amann,et al.  Diversity and Abundance of Aerobic and Anaerobic Methane Oxidizers at the Haakon Mosby Mud Volcano, Barents Sea , 2007, Applied and Environmental Microbiology.

[11]  D. Moreira,et al.  Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. , 2007, Environmental microbiology.

[12]  J. Seewald,et al.  Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. , 2007, Chemical reviews.

[13]  B. Lollar,et al.  Geochemistry: Biosignatures and abiotic constraints on early life , 2006, Nature.

[14]  T. Shank,et al.  Off-axis symbiosis found: Characterization and biogeography of bacterial symbionts of Bathymodiolus mussels from Lost City hydrothermal vents. , 2006, Environmental microbiology.

[15]  R. Amann,et al.  Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink , 2006, Nature.

[16]  J. Baross,et al.  Methane- and Sulfur-Metabolizing Microbial Communities Dominate the Lost City Hydrothermal Field Ecosystem , 2006, Applied and Environmental Microbiology.

[17]  P. Claus,et al.  Carbon Isotope Fractionation during Acetoclastic Methanogenesis by Methanosaeta concilii in Culture and a Lake Sediment , 2006, Applied and Environmental Microbiology.

[18]  D. Kelley,et al.  Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field , 2006 .

[19]  R. Seifert,et al.  Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). , 2006, Environmental microbiology.

[20]  Jacob R Waldbauer,et al.  Steroids, triterpenoids and molecular oxygen , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  J. Kasting,et al.  Palaeoclimates: the first two billion years , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[22]  Stefan Schouten,et al.  Composition and implications of diverse lipids in New Zealand Geothermal sinters , 2006 .

[23]  M. Lilley,et al.  Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer , 2006 .

[24]  E. Hopmans,et al.  Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes , 2006 .

[25]  Keita Yamada,et al.  Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era , 2006, Nature.

[26]  J. Seewald,et al.  Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions , 2006 .

[27]  M. Zolotov,et al.  Experimental investigation of single carbon compounds under hydrothermal conditions , 2006 .

[28]  D. Catling Comment on "A Hydrogen-Rich Early Earth Atmosphere" , 2006, Science.

[29]  A. Pavlov,et al.  Response to Comment on "A Hydrogen-Rich Early Earth Atmosphere" , 2006, Science.

[30]  R. Conrad,et al.  Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental samples at different energy status , 2005, Global change biology.

[31]  G. Bohrmann,et al.  Chemoherms on Hydrate Ridge — Unique microbially-mediated carbonate build-ups growing into the water column , 2005 .

[32]  V. Thiel,et al.  Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments , 2005 .

[33]  T. Treude,et al.  Spatial variations of methanotrophic consortia at cold methane seeps: implications from a high‐resolution molecular and isotopic approach , 2005 .

[34]  James F. Kasting,et al.  Methane and climate during the Precambrian era , 2005 .

[35]  G. Rehder,et al.  Methane sources, distributions, and fluxes from cold vent sites at Hydrate Ridge, Cascadia Margin , 2005 .

[36]  Alexander A. Pavlov,et al.  A Hydrogen-Rich Early Earth Atmosphere , 2005, Science.

[37]  R. Conrad Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal , 2005 .

[38]  Dana R. Yoerger,et al.  A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field , 2005, Science.

[39]  K. Straub,et al.  Occurrence of hopanoid lipids in anaerobic Geobacter species. , 2005, FEMS microbiology letters.

[40]  Rudolf Amann,et al.  Diversity and Distribution of Methanotrophic Archaea at Cold Seeps , 2005, Applied and Environmental Microbiology.

[41]  R. Summons,et al.  Targeted genomic detection of biosynthetic pathways: anaerobic production of hopanoid biomarkers by a common sedimentary microbe , 2005 .

[42]  Marco Giuranna,et al.  Detection of Methane in the Atmosphere of Mars , 2004, Science.

[43]  J. Baross,et al.  Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. , 2004, Environmental microbiology.

[44]  R. Coleman,et al.  H2-rich fluids from serpentinization: geochemical and biotic implications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Seifert,et al.  Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Lowe,et al.  Geologic evidence for Archean atmospheric and climatic evolution: Fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control , 2004 .

[47]  M. Strous,et al.  The occurrence of hopanoids in planctomycetes : Implications for the sedimentary biomarker record , 2004 .

[48]  A. Chidthaisong,et al.  Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens , 2004 .

[49]  W. Seyfried,et al.  Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems , 2004 .

[50]  L. Jahnke,et al.  Stable Carbon Isotope Ratios of Lipid Biomarkers of Sulfate-Reducing Bacteria , 2004, Applied and Environmental Microbiology.

[51]  Yanan Shen,et al.  The antiquity of microbial sulfate reduction , 2004 .

[52]  M. Russell The Importance of Being Alkaline , 2003, Science.

[53]  D. Butterfield,et al.  30,000 Years of Hydrothermal Activity at the Lost City Vent Field , 2003, Science.

[54]  K. Stetter,et al.  Carbon isotopic fractionation by Archaeans and other thermophilic prokaryotes , 2003 .

[55]  H. Reichenbach,et al.  Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)‐oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca , 2003, Molecular microbiology.

[56]  J. S. Sinninghe Damsté,et al.  Molecular isotopic tracing of carbon flow and trophic relationships in a methane‐supported benthic microbial community , 2002 .

[57]  Rudolf Amann,et al.  Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane , 2002, Science.

[58]  E. Delong,et al.  Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  K. Stetter,et al.  Morphological, Small Subunit rRNA, and Physiological Characterization of Trimyema minutum (Kahl, 1931), an Anaerobic Ciliate from Submarine Hydrothermal Vents Growing from 28 °C to 52 °C , 2002 .

[60]  M. Sogin,et al.  Microbial Diversity of Hydrothermal Sediments in the Guaymas Basin: Evidence for Anaerobic Methanotrophic Communities , 2002, Applied and Environmental Microbiology.

[61]  B. John,et al.  Geologic implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges , 2002 .

[62]  R. Huber,et al.  Signature Lipids and Stable Carbon Isotope Analyses of Octopus Spring Hyperthermophilic Communities Compared with Those ofAquificales Representatives , 2001, Applied and Environmental Microbiology.

[63]  J. Kasting,et al.  Organic haze in Earth's early atmosphere: Source of low-13C Late Archean kerogens? , 2001 .

[64]  K. Zahnle,et al.  Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth , 2001, Science.

[65]  E. Delong,et al.  Methane-Consuming Archaea Revealed by Directly Coupled Isotopic and Phylogenetic Analysis , 2001, Science.

[66]  Deborah S. Kelley,et al.  An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N , 2001, Nature.

[67]  E. Hopmans,et al.  Archaeal lipids in Mediterranean Cold Seeps : Molecular proxies for anaerobic methane oxidation , 2001 .

[68]  R. Pancost,et al.  Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonate crusts , 2001 .

[69]  J. Amend,et al.  Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. , 2001, FEMS microbiology reviews.

[70]  J. Hayes,et al.  Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments , 2000 .

[71]  Olaf Pfannkuche,et al.  A marine microbial consortium apparently mediating anaerobic oxidation of methane , 2000, Nature.

[72]  J. Hayes,et al.  Mass spectra of sn‐2‐hydroxyarchaeol, a polar lipid biomarker for anaerobic methanotrophy , 2000 .

[73]  R. Pancost,et al.  Biomarker Evidence for Widespread Anaerobic Methane Oxidation in Mediterranean Sediments by a Consortium of Methanogenic Archaea and Bacteria , 2000, Applied and Environmental Microbiology.

[74]  J. Leunissen,et al.  Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. , 2000, Molecular biology and evolution.

[75]  Thomas M. McCollom,et al.  Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa , 1999 .

[76]  Michael J. Whiticar,et al.  Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane , 1999 .

[77]  J. Brisson,et al.  A structural comparison of the total polar lipids from the human archaea Methanobrevibacter smithii and Methanosphaera stadtmanae and its relevance to the adjuvant activities of their liposomes. , 1999, Biochimica et biophysica acta.

[78]  E. Suess,et al.  Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids , 1999, Naturwissenschaften.

[79]  Peter G. Brewer,et al.  Methane-consuming archaebacteria in marine sediments , 1999, Nature.

[80]  M. Schulte,et al.  Organic synthesis during fluid mixing in hydrothermal systems , 1998 .

[81]  R. Thauer Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. , 1998, Microbiology.

[82]  P. Franzmann,et al.  Carbon isotopic fractionation associated with methylotrophic methanogenesis , 1998 .

[83]  C. Martens,et al.  Thermodynamic control on hydrogen concentrations in anoxic sediments , 1998 .

[84]  J. Hackstein,et al.  Endosymbiotic interactions in anaerobic protozoa , 1997, Antonie van Leeuwenhoek.

[85]  M. Thomm,et al.  Carbon isotope fractionation during bacterial methanogenesis by CO2 reduction , 1996 .

[86]  R. Huber,et al.  Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium ammonifex degensii gen. nov. sp. nov. , 1996, Systematic and applied microbiology.

[87]  M. Kates,et al.  Lipids of extremely halophilic archaeobacteria from saline environments in India: a novel glycolipid in Natronobacterium strains. , 1994, Microbiology.

[88]  R. Goericke,et al.  Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean , 1994 .

[89]  H. Harvey,et al.  Marine ciliates as a widespread source of tetrahymanol and hopan-3β-ol in sediments , 1991 .

[90]  J. Rullkötter,et al.  Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments , 1989 .

[91]  H. Kouchi,et al.  Accumulation of Rare Phytosterols in Plant Cells on Treatment with Metabolic Inhibitors and Mevalonic Acid , 1987 .

[92]  J. Kristjánsson,et al.  Why do sulfate-reducing bacteria outcompete methanogenic bacteria for substrates? , 1983, Oecologia.

[93]  R. Thauer,et al.  Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate , 1982, Archives of Microbiology.

[94]  L. M. Games,et al.  Methane-producing bacteria: natural fractionations of the stable carbon isotopes , 1978 .

[95]  E. Delong,et al.  The Subseafloor Biosphere at Mid-Ocean Ridges , 2004 .

[96]  T. Cavalier-smith,et al.  The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. , 2002, International journal of systematic and evolutionary microbiology.

[97]  J. Hayes Fractionation of Carbon and Hydrogen Isotopes in Biosynthetic Processes , 2001 .

[98]  M. Lilley,et al.  An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. , 2001, Nature.

[99]  E. Pikuta,et al.  Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. , 2000, International journal of systematic and evolutionary microbiology.

[100]  H. Morii,et al.  Correlation of Polar Lipid Composition with 16S rRNA Phylogeny in Methanogens. Further Analysis of Lipid Component Parts. , 1998, Bioscience, biotechnology, and biochemistry.

[101]  H. Goldfine Structure, biosynthesis, physical properties, and functions of the polar lipids of Clostridium , 1997 .

[102]  S. Bengtson Early life on earth , 1994 .

[103]  L. Goad,et al.  Sterol requirements and paclobutrazol inhibition of a celery cell culture , 1988 .