Aquatic Insects as a Source for Biomimetics

Understanding functional principles of materials, structures, sensors, actuators, locomotion, control systems, behavior of aquatic insects is of major scientific interest. On the other hand, this basic knowledge is also highly relevant for technical applications. One of the greatest challenges for today’s engineering science is miniaturization. Insects have solved many problems correlated with extremely small size, during their evolution. Zoologists, entomologists, morphologists, neurobiologists have collected a huge amount of information about the structure and function of such living micromechanical systems. This information can be utilized to mimic them for industrial applications. There are following main technology areas, where aquatic insect’s solutions may be applied: (1) materials science and technology, (2) surface science, (3) science of adhesives, (4) optics, (5) photonics, (6) sensorics, and (7) robotics. A few selected examples are discussed in this chapter, but having a great number of described aquatic insect species as a source for inspiration, one may expect a lot more ideas from aquatic insects science for biomimetics.

[1]  Underwater attachment in current: the role of setose attachment structures on the gills of the mayfly larvae Epeorus assimilis (Ephemeroptera, Heptageniidae) , 2010, Journal of Experimental Biology.

[2]  S. Gorb,et al.  Insect-Inspired Architecture: Insects and Other Arthropods as a Source for Creative Design in Architecture , 2016 .

[3]  Stanislav N. Gorb,et al.  Crystalline wax coverage of the imaginal cuticle in Calopteryx splendens (Odonata: Calopterygidae) , 2009 .

[4]  P. Manoonpong,et al.  A dung beetle-inspired robotic model and its distributed sensor-driven control for walking and ball rolling , 2018, Artificial Life and Robotics.

[5]  Stanislav Gorb,et al.  Adhesion forces measured at the level of a terminal plate of the fly's seta , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  R. Wootton,et al.  Elastic joints in dermapteran hind wings: materials and wing folding. , 2000, Arthropod structure & development.

[7]  J Casas,et al.  Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages , 2006, Journal of Experimental Biology.

[8]  Roger D. Quinn,et al.  A small wall-walking robot with compliant, adhesive feet , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  R. Quinn,et al.  Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. , 2004, Arthropod structure & development.

[10]  Wilhelm Barthlott,et al.  Wettability and Contaminability of Insect Wings as a Function of Their Surface Sculptures , 1996 .

[11]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[12]  S. Gorb Serial Elastic Elements in the Damselfly Wing: Mobile Vein Joints Contain Resilin , 1999, Naturwissenschaften.

[13]  S. Zill,et al.  Elasticity and movements of the cockroach tarsus in walking , 1999, Journal of Comparative Physiology A.

[14]  S. Gorb,et al.  Tarsal movements in flies during leg attachment and detachment on a smooth substrate. , 2003, Journal of insect physiology.

[15]  T. Weis-Fogh Molecular interpretation of the elasticity of resilin, a rubber-like protein , 1961 .

[16]  M. Shahinpoor Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review , 2003 .

[17]  S O ANDERSEN,et al.  THE CROSS-LINKS IN RESILIN IDENTIFIED AS DITYROSINE AND TRITYROSINE. , 1964, Biochimica et biophysica acta.

[18]  Stanislav Gorb,et al.  Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae) , 2001, Journal of Comparative Physiology A.

[19]  T. Weis-Fogh A Rubber-Like Protein in Insect Cuticle , 1960 .

[20]  H. Ghiradella,et al.  Structure and development of iridescent butterfly scales: Lattices and laminae , 1989, Journal of morphology.

[21]  S. Gorb,et al.  Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae) , 2006, Journal of Experimental Biology.

[22]  Nigel E. Stork,et al.  Experimental Analysis of Adhesion of Chrysolina Polita (Chrysomelidae: Coleoptera) on a Variety of Surfaces , 1980 .

[23]  Alberto B. Broce,et al.  Labellar Modifications of Muscomorpha Flies (Diptera) , 1986 .

[24]  Stanislav N. Gorb,et al.  Always on the bright side of life: anti-adhesive properties of insect ommatidia grating , 2010, Journal of Experimental Biology.

[25]  R. H. Hackman,et al.  Comparative study of some expanding arthropod cuticles: The relation between composition, structure and function , 1987 .

[26]  Shoziro Ishii,et al.  Adhesion of a Leaf Feeding Ladybird Epilachna vigintioctomaculta (Coleoptera : Coccinellidae) on a Virtically Smooth Surface , 1987 .

[27]  Roger D. Quinn,et al.  Insect Walking and Biorobotics: A Relationship with Mutual Benefits , 2000 .

[28]  Pablo Perez-Goodwyn,et al.  Anti-Wetting Surfaces in Heteroptera (Insecta): Hairy Solutions to Any Problem , 2009 .

[29]  R Blickhan,et al.  The function of resilin in beetle wings , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  H. E. Hinton,et al.  The fine structure of the pupal plastron of simuliid flies , 1976 .

[31]  Olivier Dangles,et al.  Physical ecology of fluid flow sensing in arthropods. , 2010, Annual review of entomology.

[32]  Bo N. J. Persson,et al.  On the mechanism of adhesion in biological systems , 2003 .

[33]  J. R. Sambles,et al.  Structural colour: Colour mixing in wing scales of a butterfly , 2000, Nature.

[34]  Roger D. Quinn,et al.  Passive Foot Design and Contact Area Analysis for Climbing Mini-Whegs , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[35]  S. N. Gorb,et al.  Frictional properties of contacting surfaces in the hemelytra-hindwing locking mechanism in the bug Coreus marginatus (Heteroptera, Coreidae) , 2004, Journal of Comparative Physiology A.

[36]  J. Vincent,et al.  Mechanism of Abdominal Extension during Oviposition in Locusta , 1972, Nature.

[37]  R. Quinn,et al.  Insects did it first: a micropatterned adhesive tape for robotic applications , 2007, Bioinspiration & biomimetics.

[38]  The head morphology of Pyrrhosoma nymphula larvae (Odonata: Zygoptera) focusing on functional aspects of the mouthparts , 2017, Frontiers in Zoology.

[39]  Stanislav N. Gorb,et al.  An insect’s tongue as the model for two-phase viscous adhesives? , 2009 .

[40]  J. Vincent,et al.  Morphology and design of the extensible intersegmental membrane of the female migratory locust. , 1981, Tissue & cell.

[41]  V Radhakrishnan,et al.  Locomotion: dealing with friction. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Gogala,et al.  Vibration producing structures and songs of terrestrial Heteroptera as systematic character , 1984 .

[43]  M. Rothschild,et al.  The jumping mechanism of Xenopsylla cheopis. III. Execution of the jump and activity. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[44]  G. S. Graham-Smith,et al.  Further Observations on the Anatomy and Function of the Proboscis of the Blow-Fly, Calliphora erythrocephala L. , 1930 .

[45]  T. Vuocolo,et al.  Synthesis and properties of crosslinked recombinant pro-resilin , 2005, Nature.

[46]  Tom D. Schultz,et al.  Structural Colors of Tiger Beetles and Their Role in Heat Transfer through the Integument , 1987, Physiological Zoology.

[47]  R H Hackman,et al.  Expanding abdominal cuticle in the bug Rhodnius and the tick Boophilus. , 1975, Journal of insect physiology.

[48]  J. Waite,et al.  ADHESION IN BYSSALLY ATTACHED BIVALVES , 1983 .

[49]  W. Barthlott,et al.  A new bioinspired method for pressure and flow sensing based on the underwater air-retaining surface of the backswimmer Notonecta , 2018, Beilstein journal of nanotechnology.

[50]  D. J. S. Newman,et al.  Whitefly have the highest contraction frequencies yet recorded in non-fibrillar flight muscles , 1979, Nature.

[51]  S. Gorb Attachment Devices of Insect Cuticle , 2001, Springer Netherlands.

[52]  M. Scherge,et al.  Biological micro- and nanotribology , 2001 .

[53]  S. Gorb,et al.  Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation. , 2017, Acta biomaterialia.

[54]  Comparative functional morphology of vein joints in Odonata , 2014 .

[55]  M. Renner,et al.  Pulvillus of Calliphora erythrocephala Meig. (Diptera : Calliphoridae) , 1977 .

[56]  F. Delcomyn Insect walking and robotics. , 2003, Annual review of entomology.

[57]  J. Vincent,et al.  Design and mechanical properties of insect cuticle. , 2004, Arthropod structure & development.

[58]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[59]  Charles W. Heckman,et al.  Comparative morphology of arthropod exterior surfaces with the capability of binding a film of air underwater , 1983 .

[60]  E Appel,et al.  A comparative study of the effects of vein-joints on the mechanical behaviour of insect wings: I. Single joints , 2015, Bioinspiration & biomimetics.

[61]  H. Ghiradella Light and color on the wing: structural colors in butterflies and moths. , 1991, Applied optics.

[62]  H. Cruse,et al.  A Biologically Inspired Controller for Hexapod Walking: Simple Solutions by Exploiting Physical Properties , 2001, The Biological Bulletin.

[63]  S. Gorb,et al.  Slow viscoelastic response of resilin , 2018, Journal of Comparative Physiology A.

[64]  S. Gorb,et al.  Effects of multiple vein microjoints on the mechanical behaviour of dragonfly wings: numerical modelling , 2016, Royal Society Open Science.

[65]  Josef Schlattmann,et al.  The application of multi-body simulation approach in the kinematic analysis of beetle leg joints , 2017, Artificial Life and Robotics.

[66]  H. R. Hepburn,et al.  Material properties of arthropod cuticles: The arthrodial membranes , 2004, Journal of comparative physiology.

[67]  Roger D. Quinn,et al.  Mini-Whegs TM Climbs Steep Surfaces Using Insect-inspired Attachment Mechanisms , 2009, Int. J. Robotics Res..

[68]  S. Gorb,et al.  The Topology of the Leg Joints of the Beetle Pachnoda marginata (Scarabaeidae, Cetoniinae) and Its Implication for the Tribological Properties , 2018, Biomimetics.

[69]  Nigel E. Stork,et al.  The adherence of beetle tarsal setae to glass , 1983 .

[70]  Fred Delcomyn,et al.  Walking Robots and the Central and Peripheral Control of Locomotion in Insects , 1999, Auton. Robots.

[71]  Kyriakos Komvopoulos,et al.  Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques, and adhesion theory , 2003 .

[72]  S. Gorb,et al.  WHEN LESS IS MORE: EXPERIMENTAL EVIDENCE FOR TENACITY ENHANCEMENT BY DIVISION OF CONTACT AREA , 2004 .

[73]  F. Lei,et al.  Evolution of beak morphology in the Ground Tit revealed by comparative transcriptomics , 2017, Frontiers in Zoology.

[74]  W. Gnatzy,et al.  Digger wasp against crickets , 1986, Naturwissenschaften.

[75]  S. O. Andersen Characterization of a new type of cross-linkage in resilin, a rubber-like protein. , 1963, Biochimica et biophysica acta.

[76]  H. Benjamin Brown,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. RHex: A Biologically Inspired Hexapod Runner ∗ , 2022 .

[77]  X. Li,et al.  The effect of water on friction of MEMS , 1999 .

[78]  Hartmut Witte,et al.  Biomimetic robotics should be based on functional morphology , 2004, Journal of anatomy.

[79]  Andrew R. Parker,et al.  Solar–absorber antireflector on the eye of an Eocene fly (45 Ma) , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[80]  B. Söderström,et al.  A method for determination of low carbon monoxide concentration in blood. , 1966, Acta physiologica Scandinavica.

[81]  Q. Pei,et al.  Electroelastomer rolls and their application for biomimetic walking robots , 2003 .

[82]  T Eisner,et al.  Ultraviolet Reflection of a Male Butterfly: Interference Color Caused by Thin-Layer Elaboration of Wing Scales , 1972, Science.

[83]  J. Huxley,et al.  The basis of structural colour variation in two species of Papilio , 2009 .

[84]  W. Wuich Kleben von Kunststoffen , 1985 .

[85]  Roger D. Quinn,et al.  A Robot that Climbs Walls using Micro-structured Polymer Feet , 2005, CLAWAR.

[86]  S. O. Andersen,et al.  Resilin. A Rubberlike Protein in Arthropod Cuticle , 1964 .

[87]  V. B. Wigglesworth How does a Fly Cling to The Under Surface of a Glass Sheet , 1987 .

[88]  W. Thorpe,et al.  Studies on plastron respiration; the biology of Aphelocheirus [Hemiptera, Aphelocheiridae (Naucoridae) and the mechanism of plastron retention. , 1947, The Journal of experimental biology.

[89]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[90]  Ultrastructure of the neck membrane in dragonflies (Insecta, Odonata) , 2000 .

[91]  A. Francoeur,et al.  Évolution du strigile chez les formicides (Hyménoptères). , 1988 .

[92]  Gijsbertus J.M. Krijnen,et al.  Artificial sensory hairs based on the flow sensitive receptor hairs of crickets , 2005 .

[93]  Kan Yoneda,et al.  Non-Bio-Mimetic Walkers , 2003, Int. J. Robotics Res..

[94]  P. Souder,et al.  Solid , 2020, Definitions.

[95]  Klaus Schönitzer,et al.  A phylogenetic study of the antenna cleaner in Formicidae, Mutillidae, and Tiphiidae (Insecta, Hymenoptera) , 1987, Zoomorphology.

[96]  Stanislav N. Gorb,et al.  Insect-Inspired Technologies: Insects as a Source for Biomimetics , 2011 .

[97]  Stanislav N Gorb,et al.  The jumping mechanism of cicada Cercopis vulnerata (Auchenorrhyncha, Cercopidae): skeleton-muscle organisation, frictional surfaces, and inverse-kinematic model of leg movements. , 2004, Arthropod structure & development.

[98]  S. Gorb,et al.  Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin , 2015, Journal of anatomy.

[99]  Friedrich G. Barth,et al.  Dynamics of Arthropod Filiform Hairs. I. Mathematical Modelling of the Hair and Air Motions , 1993 .

[100]  S. Anderson,et al.  Covalent cross-links in a structural protein, resilin. , 1966, Acta physiologica Scandinavica. Supplementum.

[101]  S. Gorb,et al.  From micro to nano contacts in biological attachment devices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[102]  H. Gras,et al.  Functional Coupling of Cercal Filiform Hairs and Campaniform Sensilla in Crickets , 2009 .

[103]  W. Gronenberg Fast actions in small animals: springs and click mechanisms , 1996, Journal of Comparative Physiology A.