Time Integration in the Discontinuous Galerkin Code MIGALE - Unsteady Problems

This chapter presents recent developments of a high-order Discontinuous Galerkin (DG) method to deal with unsteady simulation of turbulent flows by using high-order implicit time integration schemes. The approaches considered during the IDIHOM project were the Implicit Large Eddy Simulation (ILES), where no explicit subgrid-scale (SGS) model is included and the DG discretization itself acts like a SGS model, and two hybrid approaches between Reynolds-averaged Navier- Stokes (RANS) and Large Eddy Simulation (LES) models, namely the Spalart-Allmaras Detached Eddy Simulation (SA-DES) and the eXtra- Large Eddy Simulation (X-LES). Accurate time integration is based on high-order linearly implicit Rosenbrock-type Runge-Kutta schemes, implemented in the DG code MIGALE up to sixth-order accuracy. Several high-order DG results of both incompressible and compressible 3D turbulent test cases proposed within the IDIHOM project demonstrate the capability of the method.

[1]  P. Spalart Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach , 1997 .

[2]  H. van der Ven,et al.  Capturing free shear layers in hybrid RANS-LES simulations of separated flow , 2012 .

[3]  Francesco Bassi,et al.  A numerical investigation of a spectral‐type nodal collocation discontinuous Galerkin approximation of the Euler and Navier–Stokes equations , 2013 .

[4]  Mauro Mazza,et al.  UNIVERSITÀ DEGLI STUDI DI BERGAMO , 2013 .

[5]  Rodrick V. Chima Calculation of Tip Clearance Effects in a Transonic Compressor Rotor , 1996 .

[6]  Andrea Crivellini,et al.  An implicit matrix-free Discontinuous Galerkin solver for viscous and turbulent aerodynamic simulations , 2011 .

[7]  Wayne A. Smith,et al.  Preconditioning Applied to Variable and Constant Density Flows , 1995 .

[8]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[9]  David L. Darmofal,et al.  Impact of Turbulence Model Irregularity on High-Order Discretizations , 2009 .

[10]  Arne V. Johansson,et al.  An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows , 2000, Journal of Fluid Mechanics.

[11]  Francesco Bassi,et al.  A High Order Discontinuous Galerkin Method for Compressible Turbulent Flows , 2000 .

[12]  Koen Hillewaert,et al.  IDIHOM: Industrialization of high-order methods - a top-down approach : results of a collaborative research project funded by the European Union, 2010 - 2014 , 2015 .

[13]  C. L. Merkle,et al.  The application of preconditioning in viscous flows , 1993 .

[14]  Thomas J. R. Hughes,et al.  A comparative study of different sets of variables for solving compressible and incompressible flows , 1998 .

[15]  J. Dunham CFD VALIDATION FOR PROPULSION SYSTEM COMPONENTS , 1998 .

[16]  F. Brezzi,et al.  Discontinuous Galerkin approximations for elliptic problems , 2000 .

[17]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[18]  Jens Lang,et al.  ROS3P—An Accurate Third-Order Rosenbrock Solver Designed for Parabolic Problems , 2000 .

[19]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[20]  Clinton P. T. Groth,et al.  Assessment of Riemann solvers for unsteady one-dimensional inviscid flows for perfect gases , 1988 .

[21]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[22]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[23]  Francesco Bassi,et al.  Up to sixth-order accurate A-stable implicit schemes applied to the Discontinuous Galerkin discretized Navier-Stokes equations , 2014, J. Comput. Phys..

[24]  Ralf Hartmann,et al.  Discontinuous Galerkin methods for computational aerodynamics — 3D adaptive flow simulation with the DLR PADGE code , 2010 .

[25]  Lorenzo Botti,et al.  Influence of Reference-to-Physical Frame Mappings on Approximation Properties of Discontinuous Piecewise Polynomial Spaces , 2012, J. Sci. Comput..

[26]  James M. Luckring,et al.  Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 1; Sharp Leading Edge; [conducted in the Langley National Transonic Facility (NTF)] , 1996 .

[27]  R. Schwane,et al.  ON THE ACCURACY OF UPWIND SCHEMES FOR THE SOLUTION OF THE NAVIER-STOKES EQUATIONS , 1987 .

[28]  Andrea Crivellini,et al.  An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations , 2006, J. Comput. Phys..

[29]  S. Rebay,et al.  An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows , 2007 .

[30]  P. Tesini,et al.  On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..

[31]  Claus-Dieter Munz,et al.  A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions , 2008, J. Sci. Comput..

[32]  Alessandro Colombo,et al.  Investigation of Near-Wall Grid Spacing Effect in High-Order Discontinuous Galerkin RANS Computations of Turbomachinery Flows , 2014 .

[33]  James M Modisette,et al.  An Output-based Adaptive and Higher-Order Method for a Rotor in Hover , 2008 .

[34]  Alessandro Colombo,et al.  Very High-Order Accurate Discontinuous Galerkin Computation of Transonic Turbulent Flows on Aeronautical Configurations , 2010 .

[35]  D Hummel,et al.  The Second International Vortex Flow Experiment (VFE-2): Objectives and first results , 2006 .

[36]  Jan S. Hesthaven,et al.  Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012: Selected papers from the ICOSAHOM conference, June 25-29, 2012 , 2013 .

[37]  Guillermo Hauke,et al.  a Unified Approach to Compressible and Incompressible Flows and a New Entropy-Consistent Formulation of the K - Model. , 1994 .

[38]  Ralf Hartmann,et al.  A discontinuous Galerkin method for inviscid low Mach number flows , 2009, J. Comput. Phys..

[39]  Francesco Bassi,et al.  Spectral p‐multigrid discontinuous Galerkin solution of the Navier–Stokes equations , 2011 .

[40]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[41]  Alistair Revell,et al.  I The DESider Project , 2009 .

[42]  Alessandro Colombo,et al.  Simulation of the transitional flow in a low pressure gas turbine cascade with a high-order discontinuous Galerkin method , 2013 .

[43]  Gerd Steinebach,et al.  Order-reduction of ROW-methods for DAEs and method of lines applications , 1995 .

[44]  Simone Crippa,et al.  Advances in vortical flow prediction methods for design of delta-winged aircraft , 2008 .

[45]  Todd A. Oliver A High-Order, Adaptive, Discontinuous Galerkin Finite Element Method for the Reynolds-Averaged Navier-Stokes Equations , 2008 .

[46]  Ernst Hairer,et al.  Examples of Stiff Equations , 1996 .

[47]  A. J. Baker,et al.  A stiffly-stable implicit Runge-Kutta algorithm for CFD applications , 1988 .

[48]  Alessandro Colombo,et al.  Discontinuous Galerkin for Turbulent Flows , 2011 .

[49]  Henry Dol,et al.  EXTRA-LARGE EDDY SIMULATION OF MASSIVELY SEPARATED FLOWS , 2004 .

[50]  Christian Klein,et al.  PSP and PIV investigations on the VFE-2 configuration in sub- and transonic flow , 2008 .

[51]  Alessandro Colombo,et al.  Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations , 2012 .

[52]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[53]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[54]  S. Rebay,et al.  Efficient p‐multigrid discontinuous Galerkin solver for complex viscous flows on stretched grids , 2014 .

[55]  Johan C. Kok,et al.  Resolving the Dependence on Freestream Values for the k- Turbulence Model , 2000 .

[56]  V. Selmin,et al.  3D anisotropic unstructured grid generation , 2006 .

[57]  Christian Breitsamter,et al.  Turbulent and unsteady flow characteristics of delta wing vortex systems , 2013 .

[58]  Alessandro Colombo,et al.  Agglomeration-based physical frame dG discretizations: An attempt to be mesh free , 2014 .

[59]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[60]  Tobias Leicht,et al.  Numerical flux functions for Reynolds‐averaged Navier–Stokes and kω turbulence model computations with a line‐preconditioned p‐multigrid discontinuous Galerkin solver , 2013 .

[61]  S. Sherwin,et al.  From h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral elements , 2011 .

[62]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[63]  Francesco Bassi,et al.  Modified extended BDF scheme for the discontinuous Galerkin solution of unsteady compressible flows , 2014 .

[64]  Valerio D'Alessandro,et al.  A Spalart-Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows , 2013, J. Comput. Phys..