Aggregation for Atanassov’s Intuitionistic and Interval Valued Fuzzy Sets: The Median Operator

Atanassov's intuitionistic fuzzy sets (AIFS) and interval valued fuzzy sets (IVFS) are two generalizations of a fuzzy set, which are equivalent mathematically although different semantically. We analyze the median aggregation operator for AIFS and IVFS. Different mathematical theories have lead to different definitions of the median operator. We look at the median from various perspectives: as an instance of the intuitionistic ordered weighted averaging operator, as a Fermat point in a plane, as a minimizer of input disagreement, and as an operation on distributive lattices. We underline several connections between these approaches and summarize essential properties of the median in different representations.

[1]  Gleb Beliakov,et al.  Aggregation Functions: A Guide for Practitioners , 2007, Studies in Fuzziness and Soft Computing.

[2]  Radko Mesiar,et al.  Weighted aggregation operators based on minimization , 2008, Inf. Sci..

[3]  Etienne E. Kerre,et al.  On the role of complete lattices in mathematical morphology: From tool to uncertainty model , 2011, Inf. Sci..

[4]  Yinyu Ye,et al.  An Efficient Algorithm for Minimizing a Sum of p-Norms , 1999, SIAM J. Optim..

[5]  Humberto Bustince,et al.  Interval-Valued Fuzzy Sets Applied to Stereo Matching of Color Images , 2011, IEEE Transactions on Image Processing.

[6]  Guiwu Wei,et al.  Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making , 2010, Appl. Soft Comput..

[7]  Jack Brimberg,et al.  The Fermat—Weber location problem revisited , 1995, Math. Program..

[8]  Humberto Bustince,et al.  Image Reduction Using Means on Discrete Product Lattices , 2012, IEEE Transactions on Image Processing.

[9]  Radko Mesiar,et al.  Quantitative weights and aggregation , 2004, IEEE Transactions on Fuzzy Systems.

[10]  Radko Mesiar,et al.  Weighted ordinal means , 2007, Inf. Sci..

[11]  Xiaohong Chen,et al.  Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making , 2010, Expert Syst. Appl..

[12]  Etienne E. Kerre,et al.  Aggregation Operators in Interval-valued Fuzzy and Atanassov's Intuitionistic Fuzzy Set Theory , 2008, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models.

[13]  Humberto Bustince,et al.  On averaging operators for Atanassov's intuitionistic fuzzy sets , 2011, Inf. Sci..

[14]  Antonio Irpino,et al.  Dynamic clustering of interval data using a Wasserstein-based distance , 2008, Pattern Recognit. Lett..

[15]  J. Goguen L-fuzzy sets , 1967 .

[16]  Marie Chavent,et al.  On Central Tendency and Dispersion Measures for Intervals and Hypercubes , 2008 .

[17]  Etienne E. Kerre,et al.  On the composition of intuitionistic fuzzy relations , 2003, Fuzzy Sets Syst..

[18]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[19]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[20]  Lotfi A. Zadeh,et al.  Is there a need for fuzzy logic? , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[21]  Humberto Bustince,et al.  Structures on intuitionistic fuzzy relations , 1996, Fuzzy Sets Syst..

[22]  Vicenç Torra,et al.  Modeling decisions - information fusion and aggregation operators , 2007 .

[23]  Arie Tamir,et al.  Open questions concerning Weiszfeld's algorithm for the Fermat-Weber location problem , 1989, Math. Program..

[24]  Nicolai Bissantz,et al.  Convergence Analysis of Generalized Iteratively Reweighted Least Squares Algorithms on Convex Function Spaces , 2008, SIAM J. Optim..

[25]  H. Bustince,et al.  Generation of interval-valued fuzzy and atanassov's intuitionistic fuzzy connectives from fuzzy connectives and from K α operators: Laws for conjunctions and disjunctions, amplitude , 2008 .

[26]  K. Atanassov More on intuitionistic fuzzy sets , 1989 .

[27]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[28]  M. Shirosaki Another proof of the defect relation for moving targets , 1991 .

[29]  Ronald R. Yager,et al.  Fusion of ordinal information using weighted median aggregation , 1998, Int. J. Approx. Reason..

[30]  K. Atanassov New operations defined over the intuitionistic fuzzy sets , 1994 .

[31]  Lotfi A. Zadeh,et al.  Toward extended fuzzy logic - A first step , 2009, Fuzzy Sets Syst..

[32]  Deng-Feng Li,et al.  Mathematical-Programming Approach to Matrix Games With Payoffs Represented by Atanassov's Interval-Valued Intuitionistic Fuzzy Sets , 2010, IEEE Transactions on Fuzzy Systems.

[33]  Ronald R. Yager,et al.  OWA aggregation of intuitionistic fuzzy sets , 2009, Int. J. Gen. Syst..

[34]  J. Montero,et al.  A Survey of Interval‐Valued Fuzzy Sets , 2008 .

[35]  Zeshui Xu,et al.  Some geometric aggregation operators based on intuitionistic fuzzy sets , 2006, Int. J. Gen. Syst..

[36]  B. Monjardet "Mathématique Sociale" and Mathematics. A case study: Condorcet's effect and medians , 2008 .

[37]  Gleb Beliakov,et al.  Appropriate choice of aggregation operators in fuzzy decision support systems , 2001, IEEE Trans. Fuzzy Syst..

[38]  Fred S. Roberts,et al.  The Median Procedure on Median Graphs , 1998, Discret. Appl. Math..

[39]  Harold W. Kuhn,et al.  A note on Fermat's problem , 1973, Math. Program..

[40]  Witold Pedrycz,et al.  Type-2 Fuzzy Logic: Theory and Applications , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).

[41]  Radko Mesiar,et al.  Invariant continuous aggregation functions , 2010, Int. J. Gen. Syst..

[42]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[43]  Humberto Bustince,et al.  The median and its extensions , 2011, Fuzzy Sets Syst..

[44]  Glad Deschrijver,et al.  Arithmetic operators in interval-valued fuzzy set theory , 2007, Inf. Sci..

[45]  B. Monjardet,et al.  Theorie De La Mediane Dans Les Treillis Distributes Finis Et Applications , 1980 .

[46]  Liqun Qi,et al.  A Smoothing Newton Method for Minimizing a Sum of Euclidean Norms , 2000, SIAM J. Optim..

[47]  Gleb Beliakov,et al.  Aggregation functions based on penalties , 2010, Fuzzy Sets Syst..

[48]  José Luis García-Lapresta,et al.  Linguistic-based voting through centered OWA operators , 2009, Fuzzy Optim. Decis. Mak..

[49]  Humberto Bustince,et al.  Consensus in multi-expert decision making problems using penalty functions defined over a Cartesian product of lattices , 2014, Inf. Fusion.

[50]  Etienne E. Kerre,et al.  Implicators based on binary aggregation operators in interval-valued fuzzy set theory , 2005, Fuzzy Sets Syst..

[51]  Zeshui Xu,et al.  Intuitionistic Fuzzy Aggregation Operators , 2007, IEEE Transactions on Fuzzy Systems.

[52]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.

[53]  Deng-Feng Li,et al.  TOPSIS-Based Nonlinear-Programming Methodology for Multiattribute Decision Making With Interval-Valued Intuitionistic Fuzzy Sets , 2010, IEEE Transactions on Fuzzy Systems.

[54]  Zeshui Xu,et al.  Choquet integrals of weighted intuitionistic fuzzy information , 2010, Inf. Sci..

[55]  Prosenjit Bose,et al.  Fast approximations for sums of distances, clustering and the Fermat-Weber problem , 2003, Computational geometry.

[56]  Etienne E. Kerre,et al.  On the relationship between some extensions of fuzzy set theory , 2003, Fuzzy Sets Syst..

[57]  Yinyu Ye,et al.  An Efficient Algorithm for Minimizing a Sum of Euclidean Norms with Applications , 1997, SIAM J. Optim..

[58]  Javier Martín,et al.  Multi-argument distances , 2011, Fuzzy Sets Syst..

[59]  Jerry M. Mendel,et al.  Linguistic Summarization Using IF–THEN Rules and Interval Type-2 Fuzzy Sets , 2011, IEEE Transactions on Fuzzy Systems.

[60]  Etienne E. Kerre,et al.  On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision , 2007, Inf. Sci..

[61]  Jerry M. Mendel,et al.  Type-2 fuzzy sets and systems: an overview , 2007, IEEE Computational Intelligence Magazine.

[62]  Chandrajit L. Bajaj,et al.  The algebraic degree of geometric optimization problems , 1988, Discret. Comput. Geom..

[63]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[64]  Zeshui Xu,et al.  Generalized aggregation operators for intuitionistic fuzzy sets , 2010 .

[65]  Carlo Bertoluzza,et al.  On a new class of distances between fuzzy numbers , 1995 .

[66]  R. Yager,et al.  UNDERSTANDING THE MEDIAN AS A FUSION OPERATOR , 1997 .

[67]  Ranjit Biswas,et al.  Some operations on intuitionistic fuzzy sets , 2000, Fuzzy Sets Syst..