Rational Engineering of 2D Materials as Advanced Catalyst Cathodes for High‐Performance Metal–Carbon Dioxide Batteries

[1]  Huaping Zhao,et al.  Fundamental Understanding of Nonaqueous and Hybrid Na-CO2 Batteries: Challenges and Perspectives. , 2023, Small.

[2]  Xiaobo Ji,et al.  MOFs-derived advanced heterostructure electrodes for energy storage , 2023, Coordination Chemistry Reviews.

[3]  E. Xie,et al.  High-Performance Biodegradable Energy Storage Devices Enabled by Heterostructured MoO3 -MoS2 Composites. , 2022, Small.

[4]  M. Zhang,et al.  Resuscitation of Spent Graphite Anodes Towards  Layer-Stacked, Mechanical-Flexible, Fast-Charging Electrodes , 2022, SSRN Electronic Journal.

[5]  Wuwei Yan,et al.  Toward an Understanding of Bimetallic MXene Solid‐Solution in Binder‐Free Electrocatalyst Cathode for Advanced Li–CO2 Batteries , 2022, Advanced Functional Materials.

[6]  Lin Chen,et al.  Flexible, Stretchable, Water‐/Fire‐Proof Fiber‐Shaped Li‐CO2 Batteries with High Energy Density , 2022, Advanced Energy Materials.

[7]  Yan-Hua Yao,et al.  Designing modern aqueous batteries , 2022, Nature Reviews Materials.

[8]  Yana Vaynzof,et al.  Perovskite phase heterojunction solar cells , 2022, Nature Energy.

[9]  K. M. Naik,et al.  In Situ/Operando Characterization Techniques: The Guiding Tool for the Development of Li–CO2 Battery , 2022, Small methods.

[10]  Haoshen Zhou,et al.  Metal-air batteries: progress and perspective. , 2022, Science bulletin.

[11]  Yi‐Chun Lu,et al.  The path toward practical Li-air batteries , 2022, Joule.

[12]  A. Jen,et al.  Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture , 2022, Nature Energy.

[13]  M. Aslam,et al.  Progress and Perspectives of Metal (Li, Na, Al, Zn and K)-CO2 Batteries , 2022, Materials Today Energy.

[14]  G. Wang,et al.  Controlled Synthesis of 2D Prussian Blue Analog Nanosheets with Low Coordinated Water Content for High‐Performance Lithium Storage , 2022, Small methods.

[15]  M. Shim,et al.  Design Principles of Colloidal Nanorod Heterostructures. , 2022, Chemical reviews.

[16]  Huolin L. Xin,et al.  Chemically coupling SnO2 quantum dots and MXene for efficient CO2 electroreduction to formate and Zn–CO2 battery , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Shunli Li,et al.  Phthalocyanine Based Metal–Organic Framework Ultrathin Nanosheet for Efficient Photocathode toward Light‐Assisted Li–CO2 Battery , 2022, Advanced Functional Materials.

[18]  S. Du,et al.  Highly Stable Single‐Atom Modified MXenes as Cathode‐Active Bifunctional Catalysts in Li–CO2 Battery , 2022, Advanced Functional Materials.

[19]  Zhanxi Fan,et al.  Electrocatalytic Reduction of Carbon Dioxide to High-Value Multicarbon Products with Metal–Organic Frameworks and Their Derived Materials , 2022, ACS Materials Letters.

[20]  G. Wang,et al.  Boosting the reaction kinetics in aprotic lithium-carbon dioxide batteries with unconventional phase metal nanomaterials , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Tao Wang,et al.  Highly Efficient Cu-Porphyrin-Based Metal-Organic Framework Nanosheet as Cathode for High-Rate Li-CO2 Battery. , 2022, Small.

[22]  Yang Jin,et al.  Rechargeable Batteries for Grid Scale Energy Storage. , 2022, Chemical reviews.

[23]  Zhi-Cheng Zhang,et al.  Sn–Bi bimetallic interface induced by nano-crumples for CO2 electroreduction to formate , 2022, Rare Metals.

[24]  M. Kanatzidis,et al.  Nonequilibrium Lattice Dynamics in Photoexcited 2D Perovskites , 2022, Advanced materials.

[25]  Qi Liu,et al.  Atomically Dispersed Metal‐Based Catalysts for Zn–CO2 Batteries , 2022, Small Structures.

[26]  R. Maurer,et al.  Topological Stone-Wales Defects Enhance Bonding and Electronic Coupling at the Graphene/Metal Interface. , 2022, ACS nano.

[27]  Zhanxi Fan,et al.  Interfacial electric field effect on electrochemical carbon dioxide reduction reaction , 2022, Chem Catalysis.

[28]  A. Pines,et al.  A scalable solid-state nanoporous network with atomic-level interaction design for carbon dioxide capture , 2022, Science advances.

[29]  Liqin Wang,et al.  An integrated strategy for upgrading Li-CO2 batteries: redox mediator and separator modification , 2022, Chemical Engineering Journal.

[30]  Dehui Guan,et al.  All-Solid-State Photo-Assisted Li-CO2 Battery Working at an Ultra-Wide Operation Temperature. , 2022, ACS nano.

[31]  Shi-shang Guo,et al.  Dual Redox Active Sites N‐C@Ni2P/NiSe2 Heterostructure Supercapacitor Integrated with Triboelectric Nanogenerator toward Efficient Energy Harvesting and Storage , 2022, Advanced Functional Materials.

[32]  Ran Duan,et al.  BiO 2-x Nanosheets with Surface Electron Localizations for Efficient Electrocatalytic CO 2 Reduction to Formate , 2022, CCS Chemistry.

[33]  M. Zhang,et al.  Phase Engineering and Alkali Cation Stabilization for 1T Molybdenum Dichalcogenides Monolayers , 2022, Advanced Functional Materials.

[34]  Zhanxi Fan,et al.  Electrochemical lithium extraction from aqueous sources , 2022, Matter.

[35]  Shaojun Guo,et al.  Biaxially Compressive Strain in Ni/Ru Core/Shell Nanoplates Boosts Li–CO2 Batteries , 2022, Advanced materials.

[36]  Ashutosh Kumar Singh,et al.  Magnetic Order, Electrical Doping, and Charge-State Coupling at Amphoteric Defect Sites in Mn-Doped 2D Semiconductors. , 2022, ACS nano.

[37]  M. Zhang,et al.  Boosting Li-Ion Diffusion Kinetics of Na2Ti6-xMoxO13 via Coherent Dimensional Engineering and Lattice Tailoring: An Alternative High-Rate Anode. , 2022, ACS nano.

[38]  Qi Liu,et al.  Transient Solid-State Laser Activation of Indium for High-Performance Reduction of CO2 to Formate. , 2022, Small.

[39]  G. Wang,et al.  Decreasing the Overpotential of Aprotic Li‐CO2 Batteries with the In‐Plane Alloy Structure in Ultrathin 2D Ru‐Based Nanosheets , 2022, Advanced Functional Materials.

[40]  Junxiang Zhang,et al.  Copper Indium Sulfide Enables Li‐CO 2 Batteries with Boosted Reaction Kinetics and Cycling Stability , 2022, ENERGY & ENVIRONMENTAL MATERIALS.

[41]  Can Liu,et al.  Monolayer mosaic heterostructures , 2022, Nature Nanotechnology.

[42]  Bo Li,et al.  Endoepitaxial growth of monolayer mosaic heterostructures , 2022, Nature Nanotechnology.

[43]  Jinyuan Zhou,et al.  Design of Vertically Aligned Two-Dimensional Heterostructures of Rigid Ti3C2TX MXene and Pliable Vanadium Pentoxide for Efficient Lithium Ion Storage. , 2022, ACS nano.

[44]  G. Wang,et al.  Confined Growth of Silver–Copper Janus Nanostructures with {100} Facets for Highly Selective Tandem Electrocatalytic Carbon Dioxide Reduction , 2022, Advanced materials.

[45]  Junxiang Zhang,et al.  Binder‐Free MoN Nanofibers Catalysts for Flexible 2‐Electron Oxalate‐Based Li‐CO2 Batteries with High Energy Efficiency , 2022, Advanced Functional Materials.

[46]  Guangmin Zhou,et al.  Designing Electrophilic and Nucleophilic Dual Centers in the ReS2 Plane toward Efficient Bifunctional Catalysts for Li-CO2 Batteries. , 2022, Journal of the American Chemical Society.

[47]  G. Wang,et al.  Surface Molecular Functionalization of Unusual Phase Metal Nanomaterials for Highly Efficient Electrochemical Carbon Dioxide Reduction under Industry-Relevant Current Density. , 2022, Small.

[48]  Souvik Das,et al.  Magnetic Skyrmions in a Thickness Tunable 2D Ferromagnet from a Defect Driven Dzyaloshinskii–Moriya Interaction , 2022, Advanced materials.

[49]  Huile Jin,et al.  Highly selective and efficient electroreduction of CO2 in water by quaterpyridine derivative‐based molecular catalyst noncovalently tethered to carbon nanotubes , 2022, SmartMat.

[50]  Jun Liu,et al.  Tuning the Metal Electronic Structure of Anchored Cobalt Phthalocyanine via Dual‐Regulator for Efficient CO2 Electroreduction and Zn–CO2 Batteries , 2022, Advanced Functional Materials.

[51]  Jun Luo,et al.  Nitrogen-Doped Carbon Polyhedrons Confined Fe-P Nanocrystals as High-Efficiency Bifunctional Catalysts for Aqueous Zn-CO2 Batteries. , 2022, Small.

[52]  A. Walsh,et al.  Electronic defects in metal oxide photocatalysts , 2022, Nature Reviews Materials.

[53]  S. Fan,et al.  Doping-driven topological polaritons in graphene/α-MoO3 heterostructures , 2022, Nature Nanotechnology.

[54]  Jun Luo,et al.  Highly Dispersed Bi Clusters for Efficient Rechargeable Zn−CO2 Batteries , 2022, Applied Catalysis B: Environmental.

[55]  Haoshen Zhou,et al.  An Ultralow-Charge-Overpotential and Long-Cycle-Life Solid-State Li-Co2 Battery Enabled by Plasmon-Enhanced Solar Photothermal Catalysis , 2022, SSRN Electronic Journal.

[56]  G. Wang,et al.  Preparation of Au@Pd Core-Shell Nanorods with fcc-2H-fcc Heterophase for Highly Efficient Electrocatalytic Alcohol Oxidation. , 2021, Journal of the American Chemical Society.

[57]  Guangmin Zhou,et al.  Toward an Understanding of the Reversible Li-CO2 Batteries over Metal-N4-Functionalized Graphene Electrocatalysts. , 2021, ACS nano.

[58]  Jijing Xu,et al.  Bio-inspired design of strong self-standing cathode toward highly stable reversible Li-CO2 batteries , 2021 .

[59]  J. Pang,et al.  Potential of MXene-Based Heterostructures for Energy Conversion and Storage , 2021, ACS Energy Letters.

[60]  Shuya Wei,et al.  Electrochemistry of Metal-CO2 Batteries: Opportunities and Challenges , 2021, Energy Storage Materials.

[61]  Y. Lei,et al.  Electron accumulation enables Bi efficient CO2 reduction for formate production to boost clean Zn-CO2 batteries , 2021, Nano Energy.

[62]  H. Atwater,et al.  Coupling electrochemical CO2 conversion with CO2 capture , 2021, Nature Catalysis.

[63]  Wuwei Yan,et al.  Electron structure and reaction pathway regulation on porous cobalt-doped CeO2/graphene aerogel: A free-standing cathode for flexible and advanced Li-CO2 batteries , 2021 .

[64]  Zhong-Jun Li,et al.  Single‐Atom Ru Implanted on Co3O4 Nanosheets as Efficient Dual‐Catalyst for Li‐CO2 Batteries , 2021, Advanced science.

[65]  Hua Zhang,et al.  Synthesis of Pd3Sn and PdCuSn Nanorods with L12 Phase for Highly Efficient Electrocatalytic Ethanol Oxidation , 2021, Advanced materials.

[66]  Jianghua Yu,et al.  Interfacial engineering in hollow NiS2/FeS2-NSGA heterostructures with efficient catalytic activity for advanced Li-CO2 battery , 2021, Chemical Engineering Journal.

[67]  Xiaolei Wu,et al.  Heterostructured Materials , 2021, Progress in Materials Science.

[68]  Tianshuai Wang,et al.  Breaking the Stable Triangle of Carbonate via W–O Bonds for Li-CO2 Batteries with Low Polarization , 2021, ACS Energy Letters.

[69]  S. Cha,et al.  Electrode‐Induced Self‐Healed Monolayer MoS2 for High Performance Transistors and Phototransistors , 2021, Advanced materials.

[70]  Rong Huang,et al.  High-stability transparent flexible energy storage based on PbZrO3/muscovite heterostructure , 2021 .

[71]  Junxiang Zhang,et al.  Artificial Solid‐Electrolyte Interphase and Bamboo‐like N‐doped Carbon Nanotube Enabled Highly Rechargeable K‐CO2 Batteries , 2021, Advanced Functional Materials.

[72]  R. Ma,et al.  Aqueous Formate‐Based Li‐CO2 Battery with Low Charge Overpotential and High Working Voltage , 2021, Advanced Energy Materials.

[73]  F. Creutzig,et al.  Author Correction: A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings , 2021, Nature Energy.

[74]  Jun Ho Jang,et al.  Redox-neutral electrochemical conversion of CO2 to dimethyl carbonate , 2021, Nature Energy.

[75]  Ru‐Shi Liu,et al.  Na–CO2 battery with NASICON-structured solid-state electrolyte , 2021, Nano Energy.

[76]  Zhanxi Fan,et al.  Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copper‐Based Catalysts toward Multicarbon Products , 2021, Advanced Functional Materials.

[77]  Dong Liu,et al.  Topological Defect‐Rich Carbon as a Metal‐Free Cathode Catalyst for High‐Performance Li‐CO2 Batteries , 2021, Advanced Energy Materials.

[78]  Zhang Lin,et al.  Higher-voltage asymmetric-electrolyte metal-air batteries , 2021 .

[79]  M. Beidaghi,et al.  2D Titanium and Vanadium Carbide MXene Heterostructures for Electrochemical Energy Storage , 2021 .

[80]  Won‐Hee Ryu,et al.  Capillary-Driven Formation of Iron Nanoparticles Embedded in Nanotubes for Catalyzed Lithium–Carbon Dioxide Reaction , 2021 .

[81]  Dehui Guan,et al.  A Renewable Light-Promoted Flexible Li-CO2 Battery with Ultrahigh Energy Efficiency of 97.9. , 2021, Small.

[82]  Zhong-Jun Li,et al.  Boosting Li-CO2 battery performances by engineering oxygen vacancy on NiO nanosheets array , 2021 .

[83]  Guangmin Zhou,et al.  Engineering the Active Sites of Graphene Catalyst: From CO2 Activation to Activate Li-CO2 Batteries. , 2021, ACS nano.

[84]  X. Xia,et al.  Emerging of Heterostructure Materials in Energy Storage: A Review , 2021, Advanced materials.

[85]  Wenping Hu,et al.  Tandem catalysis in electrochemical CO2 reduction reaction , 2021, Nano Research.

[86]  X. Xia,et al.  Metal–CO2 Electrochemistry: From CO2 Recycling to Energy Storage , 2021, Advanced Energy Materials.

[87]  Shengjie Peng,et al.  Hierarchical Ti3C2Tx MXene/Carbon Nanotubes for Low Overpotential and Long-Life Li-CO2 Batteries. , 2021, ACS nano.

[88]  Kaixue Wang,et al.  Enhanced Electrochemical Performance of Aprotic Li-CO2 Batteries with a Ruthenium-Complex-Based Mobile Catalyst. , 2021, Angewandte Chemie.

[89]  F. J. Heremans,et al.  Quantum guidelines for solid-state spin defects , 2021, Nature Reviews Materials.

[90]  J. Tu,et al.  Forging Inspired Processing of Sodium‐Fluorinated Graphene Composite as Dendrite‐Free Anode for Long‐Life Na–CO2 Cells , 2021, ENERGY & ENVIRONMENTAL MATERIALS.

[91]  Jun Lu,et al.  Correlating Catalyst Design and Discharged Product to Reduce Overpotential in Li-CO2 Batteries. , 2021, Small.

[92]  A. Rosenkranz,et al.  2D MXenes: Tunable Mechanical and Tribological Properties , 2021, Advanced materials.

[93]  Zhiming Huang,et al.  Photodetectors of 2D Materials from Ultraviolet to Terahertz Waves , 2021, Advanced materials.

[94]  Zhicheng Zhang,et al.  Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction , 2021 .

[95]  Qinghua Zhang,et al.  Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution , 2021, Science Advances.

[96]  Junxiang Zhang,et al.  Vertically Aligned N-doped Carbon Nanotubes Arrays as Efficient Binder-free Catalysts for Flexible Li-CO2 Batteries , 2021 .

[97]  Eunmi Im,et al.  “Water-in-salt” and NASICON Electrolyte-Based Na–CO2 Battery , 2021, Energy Storage Materials.

[98]  L. You,et al.  Van der Waals engineering of ferroelectric heterostructures for long-retention memory , 2021, Nature Communications.

[99]  Qian Sun,et al.  Insight into MoS2–MoN Heterostructure to Accelerate Polysulfide Conversion toward High‐Energy‐Density Lithium–Sulfur Batteries , 2021, Advanced Energy Materials.

[100]  S. Fang,et al.  High-strength scalable graphene sheets by freezing stretch-induced alignment , 2021, Nature Materials.

[101]  Kenji Watanabe,et al.  Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene , 2021, Nature.

[102]  Muhammad M. Rahman,et al.  Structural Defects Modulate Electronic and Nanomechanical Properties of 2D Materials. , 2021, ACS nano.

[103]  Younan Xia,et al.  Colloidal Metal Nanocrystals with Metastable Crystal Structures. , 2021, Angewandte Chemie.

[104]  Yu Zhang,et al.  Single Metal Site and Versatile Transfer Channel Merged into Covalent Organic Frameworks Facilitate High-Performance Li-CO2 Batteries , 2020, ACS central science.

[105]  X. Sun,et al.  Recent progress and prospects of Li-CO2 batteries: Mechanisms, catalysts and electrolytes , 2021 .

[106]  Zhanxi Fan,et al.  Recent Advances in the Controlled Synthesis and Catalytic Applications of Two-Dimensional Rhodium Nanomaterials , 2020, ACS Materials Letters.

[107]  X. Sun,et al.  Probing the electrochemical evolutions of Na–CO2 nanobatteries on Pt@NCNT cathodes using in-situ environmental TEM , 2020, Energy Storage Materials.

[108]  Lin-wang Wang,et al.  Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer , 2020, Nature Energy.

[109]  L. Gu,et al.  Quasi‐Epitaxial Growth of Magnetic Nanostructures on 4H‐Au Nanoribbons , 2020, Advanced materials.

[110]  J. Kong,et al.  Unconventional ferroelectricity in moiré heterostructures , 2020, Nature.

[111]  Hua Zhang,et al.  Undercoordinated Active Sites on 4H Gold Nanostructures for CO2 Reduction. , 2020, Nano letters.

[112]  G. Wallace,et al.  Engineering 2D Materials: A Viable Pathway for Improved Electrochemical Energy Storage , 2020, Advanced Energy Materials.

[113]  Hua Zhang,et al.  Phase-Selective Epitaxial Growth of Heterophase Nanostructures on Unconventional 2H-Pd Nanoparticles. , 2020, Journal of the American Chemical Society.

[114]  A. Manthiram,et al.  Freestanding vanadium nitride nanowire membrane as an efficient, carbon-free gas diffusion cathode for Li–CO2 batteries , 2020 .

[115]  Hua Zhang,et al.  Crystal Phase Control of Gold Nanomaterials by Wet-Chemical Synthesis. , 2020, Accounts of chemical research.

[116]  Qiyuan He,et al.  Phase Engineering of Nanomaterials for Clean Energy and Catalytic Applications , 2020, Advanced Energy Materials.

[117]  Yang Cao,et al.  Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitors , 2020 .

[118]  Chan-Ho Yang,et al.  Charge-neutral defects control conductivity , 2020, Nature Materials.

[119]  Jinlan Wang,et al.  Heterophase fcc-2H-fcc gold nanorods , 2020, Nature Communications.

[120]  Hua Zhang,et al.  Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phase-dependent study. , 2020, Journal of the American Chemical Society.

[121]  L. Dai,et al.  Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually High‐Efficient CO2 Electroreduction and High‐Performance Zn–CO2 Batteries , 2020, Advanced materials.

[122]  Jin‐Ling Ma,et al.  The Stabilization Effect of CO2 Chemistries in Li-O2/CO2 Batteries. , 2020, Angewandte Chemie.

[123]  S. Dou,et al.  Boosting up the Li-CO2 Battery by the Ultrathin RuRh Nanosheet , 2020 .

[124]  Shaojun Guo,et al.  Ultrathin RuRh Alloy Nanosheets Enable High-Performance Lithium-CO2 Battery , 2020, Matter.

[125]  Kenji Watanabe,et al.  Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene , 2020, Nature.

[126]  I. Mora‐Seró Turn defects into strengths , 2020 .

[127]  J. Connell,et al.  An ultra-long life, high-performance, flexible Li–CO2 battery based on multifunctional carbon electrocatalysts , 2020 .

[128]  Yun Qiao,et al.  Synergistic effect of bifunctional catalytic sites and defect engineering for high-performance Li–CO2 batteries , 2020 .

[129]  Liping Zhang,et al.  Damp-Heat-Stable, High-Efficiency, Industrial-Size Silicon Heterojunction Solar Cells , 2020 .

[130]  Qiyuan He,et al.  Phase engineering of nanomaterials , 2020, Nature Reviews Chemistry.

[131]  Xiaowei Mu,et al.  Towards a stable Li–CO2 battery: The effects of CO2 to the Li metal anode , 2020 .

[132]  Jianli Cheng,et al.  Unraveling Reaction Mechanisms of Mo2C as Cathode Catalyst in Li-CO2 Battery. , 2020, Journal of the American Chemical Society.

[133]  M. Berggren,et al.  Ground-state electron transfer in all-polymer donor–acceptor heterojunctions , 2020, Nature Materials.

[134]  Rosy,et al.  Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future. , 2020, Chemical reviews.

[135]  S. An,et al.  Core-branched NiCo2S4@CoNi-LDH heterostructure as advanced electrode with superior energy storage performance , 2020 .

[136]  Jun Lu,et al.  High‐Performance, Long‐Life, Rechargeable Li–CO2 Batteries based on a 3D Holey Graphene Cathode Implanted with Single Iron Atoms , 2020, Advanced materials.

[137]  T. Jaramillo,et al.  Using Microenvironments to Control Reactivity in CO2 Electrocatalysis , 2020 .

[138]  Fuyi Chen,et al.  Achieving Low Charge Overpotential in a Li-CO2 Battery with Bimetallic RuCo Nanoalloy Decorated Carbon Nanofiber Cathodes , 2020 .

[139]  Zhong Lin Wang,et al.  High-Performance Li-CO2 Batteries from Free-Standing, Binder-Free, Bifunctional Three-Dimensional Carbon Catalysts , 2020 .

[140]  S. Kwak,et al.  Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell , 2020, Nature Communications.

[141]  M. Jaroniec,et al.  Phosphorus vacancies boost electrocatalytic hydrogen evolution by two orders of magnitude. , 2020, Angewandte Chemie.

[142]  X. Cao,et al.  A Zn–CO2 Flow Battery Generating Electricity and Methane , 2020, Advanced Functional Materials.

[143]  Qiyuan He,et al.  Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction , 2020, Nature Communications.

[144]  Zhen Zhou,et al.  Metal–CO2 Batteries at the Crossroad to Practical Energy Storage and CO2 Recycle , 2019, Advanced Functional Materials.

[145]  D. Muller,et al.  Targeted chemical pressure yields tuneable millimetre-wave dielectric , 2019, Nature Materials.

[146]  L. Dai,et al.  High-performance K-CO2 batteries based on metal-free bifunctional carbon electrocatalysts. , 2019, Angewandte Chemie.

[147]  Jiaguo Yu,et al.  Highly Selective CO2 Capture and Its Direct Photochemical Conversion on Ordered 2D/1D Heterojunctions , 2019, Joule.

[148]  A. Manthiram,et al.  Efficient Li–CO2 Batteries with Molybdenum Disulfide Nanosheets on Carbon Nanotubes as a Catalyst , 2019, ACS Applied Energy Materials.

[149]  C. Yuan,et al.  Atomically Defined Undercoordinated Active Sites for Highly Efficient CO2 Electroreduction , 2019, Advanced Functional Materials.

[150]  R. Johnston,et al.  Tuning electronic and composition effects in ruthenium-copper alloy nanoparticles anchored on carbon nanofibers for rechargeable Li-CO2 batteries , 2019, Chemical Engineering Journal.

[151]  Kun Zhang,et al.  Covalent‐Organic‐Framework‐Based Li–CO2 Batteries , 2019, Advanced materials.

[152]  S. Dou,et al.  Targeted Synergy between Adjacent Co Atoms on Graphene Oxide as an Efficient New Electrocatalyst for Li–CO2 Batteries , 2019, Advanced Functional Materials.

[153]  Tongchao Liu,et al.  Li–CO2 Batteries: Bamboo‐Like Nitrogen‐Doped Carbon Nanotube Forests as Durable Metal‐Free Catalysts for Self‐Powered Flexible Li–CO2 Batteries (Adv. Mater. 39/2019) , 2019, Advanced Materials.

[154]  Tongchao Liu,et al.  Bamboo‐Like Nitrogen‐Doped Carbon Nanotube Forests as Durable Metal‐Free Catalysts for Self‐Powered Flexible Li–CO2 Batteries , 2019, Advanced materials.

[155]  B. Wei,et al.  Realizing Interfacial Electronic Interaction within ZnS Quantum Dots/N‐rGO Heterostructures for Efficient Li–CO2 Batteries , 2019, Advanced Energy Materials.

[156]  Q. Peng,et al.  A Co-Doped MnO2 Catalyst for Li-CO2 Batteries with Low Overpotential and Ultrahigh Cyclability. , 2019, Small.

[157]  Qiyuan He,et al.  Unusual 4H-phase twinned noble metal nanokites , 2019, Nature Communications.

[158]  Hao Ming Chen,et al.  Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO , 2019, Science.

[159]  Igor Aharonovich,et al.  Room Temperature Initialisation and Readout of Intrinsic Spin Defects in a Van der Waals Crystal , 2019 .

[160]  YuHuang Wang,et al.  Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects , 2019, Nature Reviews Chemistry.

[161]  K. Novoselov,et al.  Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.

[162]  D. Su,et al.  Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis , 2019, Joule.

[163]  A. Manthiram,et al.  Phenyl Disulfide Additive for Solution‐Mediated Carbon Dioxide Utilization in Li–CO2 Batteries , 2019, Advanced Energy Materials.

[164]  Hao Li,et al.  Simultaneous synthesis and integration of two-dimensional electronic components , 2019, Nature Electronics.

[165]  Ibrahim Saana Amiinu,et al.  Effects of Intrinsic Pentagon Defects on Electrochemical Reactivity of Carbon Nanomaterials. , 2019, Angewandte Chemie.

[166]  J. Yao,et al.  Rechargeable Zn–CO2 Electrochemical Cells Mimicking Two‐Step Photosynthesis , 2019, Advanced materials.

[167]  S. Dou,et al.  Understanding the Reaction Chemistry during Charging in Aprotic Lithium–Oxygen Batteries: Existing Problems and Solutions , 2019, Advanced materials.

[168]  Haoyi Li,et al.  Phase Control in Inorganic Nanocrystals through Finely Tuned Growth at an Ultrathin Scale. , 2019, Accounts of chemical research.

[169]  S. Feng,et al.  Drawing a Pencil‐Trace Cathode for a High‐Performance Polymer‐Based Li–CO2 Battery with Redox Mediator , 2019, Advanced Functional Materials.

[170]  Zhen Zhou,et al.  Exploiting Synergistic Effect by Integrating Ruthenium–Copper Nanoparticles Highly Co‐Dispersed on Graphene as Efficient Air Cathodes for Li–CO2 Batteries , 2019, Advanced Energy Materials.

[171]  K. Khoshmanesh,et al.  Atomically thin two-dimensional metal oxide nanosheets and their heterostructures for energy storage , 2019, Energy Storage Materials.

[172]  Kenji Watanabe,et al.  Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.

[173]  P. Ding,et al.  Conjugated Cobalt Polyphthalocyanine as the Elastic and Reprocessable Catalyst for Flexible Li–CO2 Batteries , 2018, Advanced materials.

[174]  J. Xie,et al.  Long-life Li–CO2 cells with ultrafine IrO2-decorated few-layered δ-MnO2 enabling amorphous Li2CO3 growth , 2018, Energy Storage Materials.

[175]  P. Ding,et al.  Li-CO2 Batteries: Conjugated Cobalt Polyphthalocyanine as the Elastic and Reprocessable Catalyst for Flexible Li-CO2 Batteries (Adv. Mater. 2/2019) , 2019, Advanced Materials.

[176]  Betar M. Gallant,et al.  Tailoring the Discharge Reaction in Li-CO2 Batteries through Incorporation of CO2 Capture Chemistry , 2018, Joule.

[177]  J. Yao,et al.  Reversible Aqueous Zinc-CO2 Batteries Based on CO2 -HCOOH Interconversion. , 2018, Angewandte Chemie.

[178]  Xinsheng Wang,et al.  Potential 2D Materials with Phase Transitions: Structure, Synthesis, and Device Applications , 2018, Advanced materials.

[179]  Feng Wu,et al.  Crumpled Ir Nanosheets Fully Covered on Porous Carbon Nanofibers for Long‐Life Rechargeable Lithium–CO2 Batteries , 2018, Advanced materials.

[180]  Yongfu Tang,et al.  Probing the charging and discharging behavior of K-CO2 nanobatteries in an aberration corrected environmental transmission electron microscope , 2018, Nano Energy.

[181]  Kaixue Wang,et al.  Carbonate decomposition: Low-overpotential Li-CO2 battery based on interlayer-confined monodisperse catalyst , 2018, Energy Storage Materials.

[182]  T. Heinz,et al.  Ultrafast dynamics in van der Waals heterostructures , 2018, Nature Nanotechnology.

[183]  Gengfeng Zheng,et al.  Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system , 2018, Nature Communications.

[184]  Hua Zhang,et al.  Pressure-Induced Phase Engineering of Gold Nanostructures. , 2018, Journal of the American Chemical Society.

[185]  Jie Liu,et al.  A Highly Reversible Long-Life Li-CO2 Battery with a RuP2 -Based Catalytic Cathode. , 2018, Small.

[186]  Jian Li,et al.  A Geologic Architecture System‐Inspired Micro‐/Nano‐Heterostructure Design for High‐Performance Energy Storage , 2018, Advanced Energy Materials.

[187]  Qian Wang,et al.  Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers , 2018, Nature Materials.

[188]  Hua Zhang,et al.  Crystal phase control in two-dimensional materials , 2018, Science China Chemistry.

[189]  L. Gu,et al.  Highly Efficient CO2 Electroreduction on ZnN4 -based Single-Atom Catalyst. , 2018, Angewandte Chemie.

[190]  Jun Luo,et al.  Rechargeable Al–CO2 Batteries for Reversible Utilization of CO2 , 2018, Advanced materials.

[191]  Hua Zhang,et al.  Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. , 2018, Chemical reviews.

[192]  Zhen Zhou,et al.  Fabricating Ir/C Nanofiber Networks as Free-Standing Air Cathodes for Rechargeable Li-CO2 Batteries. , 2018, Small.

[193]  Bo Chen,et al.  Crystal Phase and Architecture Engineering of Lotus‐Thalamus‐Shaped Pt‐Ni Anisotropic Superstructures for Highly Efficient Electrochemical Hydrogen Evolution , 2018, Advanced materials.

[194]  Jun Huang,et al.  Achilles' Heel of Lithium-Air Batteries: Lithium Carbonate. , 2018, Angewandte Chemie.

[195]  Yunlong Zhao,et al.  MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage , 2018, Nano Research.

[196]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[197]  S. Jiang,et al.  Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction , 2018, Advanced materials.

[198]  Yi Cui,et al.  Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics , 2018, Nature Nanotechnology.

[199]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[200]  Zhen Zhou,et al.  Verifying the Rechargeability of Li‐CO2 Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N‐Doped Graphene , 2017, Advanced science.

[201]  Mark A. Marsalis,et al.  Sub-nanometre channels embedded in two-dimensional materials. , 2017, Nature materials.

[202]  Huisheng Peng,et al.  A Li–Air Battery with Ultralong Cycle Life in Ambient Air , 2018, Advanced materials.

[203]  Stefan Kaskel,et al.  Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2 , 2017, Nature Communications.

[204]  W. Chu,et al.  Exclusive Ni-N4 Sites Realize Near-Unity CO Selectivity for Electrochemical CO2 Reduction. , 2017, Journal of the American Chemical Society.

[205]  Wei Huang,et al.  Facile synthesis of gold nanomaterials with unusual crystal structures , 2017, Nature Protocols.

[206]  Ping He,et al.  Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage , 2017 .

[207]  Daniel Adjei Agyeman,et al.  High‐Energy‐Density Metal–Oxygen Batteries: Lithium–Oxygen Batteries vs Sodium–Oxygen Batteries , 2017, Advanced materials.

[208]  Xin-bo Zhang,et al.  Li–air batteries: Decouple to stabilize , 2017, Nature Energy.

[209]  Yongyao Xia,et al.  A Rechargeable Li-CO2 Battery with a Gel Polymer Electrolyte. , 2017, Angewandte Chemie.

[210]  M. Chhowalla,et al.  Structural and quantum-state phase transitions in van der Waals layered materials , 2017, Nature Physics.

[211]  Yury Gogotsi,et al.  Two-dimensional heterostructures for energy storage , 2017, Nature Energy.

[212]  O. Voznyy,et al.  Engineering charge transport by heterostructuring solution-processed semiconductors , 2017 .

[213]  Lili Liu,et al.  Mo2C/CNT: An Efficient Catalyst for Rechargeable Li–CO2 Batteries , 2017 .

[214]  D. Muller,et al.  Janus monolayers of transition metal dichalcogenides. , 2017, Nature nanotechnology.

[215]  Jian Lu,et al.  Dual-phase nanostructuring as a route to high-strength magnesium alloys , 2017, Nature.

[216]  B. McCloskey,et al.  Li–air batteries: Importance of singlet oxygen , 2017, Nature Energy.

[217]  Zhang Zhang,et al.  Metal–CO2 Batteries on the Road: CO2 from Contamination Gas to Energy Source , 2017, Advanced materials.

[218]  M. G. Park,et al.  Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives , 2017, Advanced materials.

[219]  Jianchao Sun,et al.  Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes , 2017, Science Advances.

[220]  M. Hersam,et al.  Mixed-dimensional van der Waals heterostructures. , 2016, Nature materials.

[221]  J. Mannhart,et al.  Quantum-Matter Heterostructures , 2016, 1607.07239.

[222]  Zhanxi Fan,et al.  Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications. , 2016, Accounts of chemical research.

[223]  M. Buehler,et al.  Atomically Sharp Crack Tips in Monolayer MoS2 and Their Enhanced Toughness by Vacancy Defects. , 2016, ACS nano.

[224]  M. Engel,et al.  Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. , 2016, Chemical reviews.

[225]  Chang E. Ren,et al.  Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices , 2016 .

[226]  Hua Zhang,et al.  Synthesis of 4H/fcc-Au@M (M = Ir, Os, IrOs) Core-Shell Nanoribbons For Electrocatalytic Oxygen Evolution Reaction. , 2016, Small.

[227]  Mohammad Asadi,et al.  Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid , 2016, Science.

[228]  Jun Chen,et al.  Rechargeable Room-Temperature Na-CO2 Batteries. , 2016, Angewandte Chemie.

[229]  J. Warner,et al.  Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2. , 2016, ACS nano.

[230]  Yaobing Wang,et al.  Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn‐Air Batteries , 2016, Advanced materials.

[231]  Qiang Fu,et al.  Catalysis with two-dimensional materials and their heterostructures. , 2016, Nature nanotechnology.

[232]  Hongli Zhu,et al.  Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction , 2016, Nature Communications.

[233]  Bing Li,et al.  Synthesis of 4H/fcc Noble Multimetallic Nanoribbons for Electrocatalytic Hydrogen Evolution Reaction. , 2016, Journal of the American Chemical Society.

[234]  Ali Almansoori,et al.  Readily processed protonic ceramic fuel cells with high performance at low temperatures , 2015, Science.

[235]  K. P. Ong,et al.  Stabilization of 4H hexagonal phase in gold nanoribbons , 2015, Nature Communications.

[236]  Younan Xia,et al.  Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products. , 2015, Journal of the American Chemical Society.

[237]  Zhang Zhang,et al.  The First Introduction of Graphene to Rechargeable Li-CO2 Batteries. , 2015, Angewandte Chemie.

[238]  Hua Zhang,et al.  Surface modification-induced phase transformation of hexagonal close-packed gold square sheets , 2015, Nature Communications.

[239]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[240]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[241]  Yimin Kang,et al.  Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer , 2014, Advanced materials.

[242]  B. Yakobson,et al.  Two-dimensional mono-elemental semiconductor with electronically inactive defects: the case of phosphorus. , 2014, Nano letters.

[243]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[244]  B. McCloskey,et al.  On the Origin and Implications of Li$_2$O$_2$ Toroid Formation in Nonaqueous Li-O$_2$ Batteries , 2014, 1406.3335.

[245]  Michel Dupuis,et al.  Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. , 2013, Chemical reviews.

[246]  Hyung-Kyu Lim,et al.  Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. , 2013, Journal of the American Chemical Society.

[247]  Lynden A. Archer,et al.  The Li–CO2 battery: a novel method for CO2 capture and utilization , 2013 .

[248]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[249]  D. Muller,et al.  Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. , 2013, Nature materials.

[250]  Yunfeng Shi,et al.  Wetting transparency of graphene. , 2012, Nature materials.

[251]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[252]  Yang Ding,et al.  Long-Range Topological Order in Metallic Glass , 2011, Science.

[253]  P. Kim,et al.  Observation of the fractional quantum Hall effect in graphene , 2009, Nature.

[254]  J. Edmonds,et al.  Implications of Limiting CO2 Concentrations for Land Use and Energy , 2009, Science.

[255]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[256]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[257]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[258]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[259]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[260]  Sun,et al.  Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices , 2000, Science.

[261]  Atul K. Jain,et al.  Energy implications of future stabilization of atmospheric CO2 content , 1998, Nature.

[262]  Z. Alferov,et al.  The history and future of semiconductor heterostructures , 1998 .

[263]  H. Mao,et al.  New transformations between crystalline and amorphous ice , 1989, Nature.

[264]  H. Mao,et al.  Pressure-induced amorphization of crystalline silica , 1988, Nature.