A multipole-accelerated algorithm for close interaction of slightly deformable drops

[1]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers , 1961 .

[2]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[3]  J. Blake,et al.  A note on the image system for a stokeslet in a no-slip boundary , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  F. A. Morrison,et al.  The slow motion of two touching fluid spheres along their line of centers , 1974 .

[5]  A. Acrivos,et al.  A numerical study of the deformation and burst of a viscous drop in an extensional flow , 1978, Journal of Fluid Mechanics.

[6]  A. Z. Zinchenko The slow asymmetric motion of two drops in a viscous medium , 1980 .

[7]  J. M. Rallison A numerical study of the deformation and burst of a viscous drop in general shear flows , 1981, Journal of Fluid Mechanics.

[8]  A. Z. Zinchenko Calculation of close interaction between drops, with internal circulation and slip effect taken into account , 1981 .

[9]  A. Z. Zinchenko Calculation of the effectiveness of gravitational coagulation of drops with allowance for internal circulation , 1982 .

[10]  A. Z. Zinchenko Hydrodynamic interaction of two identical liquid spheres in linear flow field , 1983 .

[11]  Eric S. G. Shaqfeh,et al.  The instability of a dispersion of sedimenting spheroids , 1989, Journal of Fluid Mechanics.

[12]  Robert H. Davis,et al.  The lubrication force between two viscous drops , 1989 .

[13]  S. G. Yiantsios,et al.  On the buoyancy-driven motion of a drop towards a rigid surface or a deformable interface , 1990, Journal of Fluid Mechanics.

[14]  S. G. Yiantsios,et al.  Close approach and deformation of two viscous drops due to gravity and van der waals forces , 1991 .

[15]  Sangtae Kim,et al.  Microhydrodynamics: Principles and Selected Applications , 1991 .

[16]  C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Flow: Index , 1992 .

[17]  Michael Manga,et al.  Buoyancy-driven interactions between two deformable viscous drops , 1993, Journal of Fluid Mechanics.

[18]  Alexander Z. Zinchenko,et al.  The collision rate of small drops in linear flow fields , 1994, Journal of Fluid Mechanics.

[19]  H. Stone,et al.  Collective hydrodynamics of deformable drops and bubbles in dilute low Reynolds number suspensions , 1995, Journal of Fluid Mechanics.

[20]  E. J. Hinch,et al.  Numerical simulation of a concentrated emulsion in shear flow , 1996, Journal of Fluid Mechanics.

[21]  A. Sangani,et al.  An O(N) algorithm for Stokes and Laplace interactions of particles , 1996 .

[22]  Alexander Z. Zinchenko,et al.  Buoyancy-driven coalescence of slightly deformable drops , 1997, Journal of Fluid Mechanics.

[23]  Alexander Z. Zinchenko,et al.  A novel boundary-integral algorithm for viscous interaction of deformable drops , 1997 .

[24]  E. J. Hinch,et al.  Collision of two deformable drops in shear flow , 1997, Journal of Fluid Mechanics.

[25]  M. Loewenberg Numerical Simulation of Concentrated Emulsion Flows , 1998 .

[26]  Vittorio Cristini,et al.  Drop breakup in three-dimensional viscous flows , 1998 .

[27]  Alexander Z. Zinchenko,et al.  Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm , 1999, Journal of Fluid Mechanics.

[28]  Robert H. Davis,et al.  An Efficient Algorithm for Hydrodynamical Interaction of Many Deformable Drops , 2000 .

[29]  Ivan B. Bazhlekov,et al.  The effect of the dispersed to continuous-phase viscosity ratio on film drainage between interacting drops , 2000 .

[30]  S. D. Hudson,et al.  Droplet growth by coalescence in binary fluid mixtures. , 2001, Physical review letters.

[31]  Vittorio Cristini,et al.  An adaptive mesh algorithm for evolving surfaces: simulation of drop breakup and coalescence , 2001 .

[32]  Robert H. Davis,et al.  The effect of slight deformation on droplet coalescence in linear flows , 2001 .

[33]  D. Koch,et al.  Collision and rebound of small droplets in an incompressible continuum gas , 2002, Journal of Fluid Mechanics.

[34]  Alexander Z. Zinchenko,et al.  Shear flow of highly concentrated emulsions of deformable drops by numerical simulations , 2002, Journal of Fluid Mechanics.

[35]  S. D. Hudson,et al.  The effect of surfactant on the efficiency of shear-induced drop coalescence. , 2003, Journal of colloid and interface science.

[36]  Robert H. Davis,et al.  Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow , 2003 .

[37]  L. G. Leal,et al.  The effect of compatibilizer on the coalescence of two drops in flow , 2003 .

[38]  Alexander Z. Zinchenko,et al.  Large–scale simulations of concentrated emulsion flows , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  M. Loewenberg,et al.  Hindered and enhanced coalescence of drops in stokes flows. , 2004, Physical review letters.