Regulation of the Catabolic Cascade in Osteoarthritis by the Zinc-ZIP8-MTF1 Axis

[1]  G. Falkenberg,et al.  Differential accumulation of lead and zinc in double-tidemarks of articular cartilage. , 2013, Osteoarthritis and cartilage.

[2]  D. Hunter,et al.  Post-traumatic osteoarthritis: from mouse models to clinical trials , 2013, Nature Reviews Rheumatology.

[3]  L. Riley,et al.  Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis , 2013, Nature Medicine.

[4]  Barbara Rehermann,et al.  A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus , 2013, Nature Genetics.

[5]  温春毅,et al.  Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis , 2013 .

[6]  W. Schaffner,et al.  The taste of heavy metals: gene regulation by MTF-1. , 2012, Biochimica et biophysica acta.

[7]  M. Knutson,et al.  ZIP8 Is an Iron and Zinc Transporter Whose Cell-surface Expression Is Up-regulated by Cellular Iron Loading* , 2012, The Journal of Biological Chemistry.

[8]  J. Chun,et al.  Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. , 2012, Arthritis and rheumatism.

[9]  S. Goldring,et al.  The role of synovitis in osteoarthritis pathogenesis. , 2012, Bone.

[10]  S. Goldring,et al.  Osteoarthritis: a disease of the joint as an organ. , 2012, Arthritis and rheumatism.

[11]  D. Nebert,et al.  ZIP8 Zinc Transporter: Indispensable Role for Both Multiple-Organ Organogenesis and Hematopoiesis In Utero , 2012, PloS one.

[12]  S. Yang,et al.  Hypoxia-inducible factor-2α regulates Fas-mediated chondrocyte apoptosis during osteoarthritic cartilage destruction , 2011, Cell Death and Differentiation.

[13]  Yongjun Wang,et al.  Osteoarthritis: genetic factors, animal models, mechanisms, and therapies. , 2012, Frontiers in bioscience.

[14]  Gunnar F. Kwakye,et al.  Novel high-throughput assay to assess cellular manganese levels in a striatal cell line model of Huntington's disease confirms a deficit in manganese accumulation. , 2011, Neurotoxicology.

[15]  Siyoung Yang,et al.  Interleukin-6 plays an essential role in hypoxia-inducible factor 2α-induced experimental osteoarthritic cartilage destruction in mice. , 2011, Arthritis and rheumatism.

[16]  T. Hirano,et al.  Zinc homeostasis and signaling in health and diseases , 2011, JBIC Journal of Biological Inorganic Chemistry.

[17]  Johanne Martel-Pelletier,et al.  Role of proinflammatory cytokines in the pathophysiology of osteoarthritis , 2011, Nature Reviews Rheumatology.

[18]  C. Little,et al.  The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the mouse. , 2010, Osteoarthritis and cartilage.

[19]  Jonghwan Kim,et al.  Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction , 2010, Nature Medicine.

[20]  Charles P. Fontaine,et al.  Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. , 2010, Metallomics : integrated biometal science.

[21]  C. Blindauer,et al.  Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. , 2010, Natural product reports.

[22]  Z. Werb,et al.  Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. , 2009, Arthritis and rheumatism.

[23]  H. Weinans,et al.  ADAMTS5-/- mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage and subchondral bone changes. , 2007, Osteoarthritis and cartilage.

[24]  H. C. Hoeck,et al.  Differences in zinc status between patients with osteoarthritis and osteoporosis. , 2009, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements.

[25]  Francis Berenbaum,et al.  Primary culture and phenotyping of murine chondrocytes , 2008, Nature Protocols.

[26]  S. Glasson,et al.  The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. , 2007, Osteoarthritis and cartilage.

[27]  J. Laity,et al.  Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). , 2007, Archives of biochemistry and biophysics.

[28]  T. Hirano,et al.  Zinc is a novel intracellular second messenger , 2007, The Journal of cell biology.

[29]  Andrew J. Ewald,et al.  Matrix metalloproteinases and the regulation of tissue remodelling , 2007, Nature Reviews Molecular Cell Biology.

[30]  S. Libregts,et al.  Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. , 2007, Arthritis and rheumatism.

[31]  R. Cousins,et al.  Mammalian Zinc Transport, Trafficking, and Signals* , 2006, Journal of Biological Chemistry.

[32]  S. Akira,et al.  Toll-like receptor–mediated regulation of zinc homeostasis influences dendritic cell function , 2006, Nature Immunology.

[33]  S. Narumiya,et al.  Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis , 2006, The Journal of experimental medicine.

[34]  Antonio Rosato,et al.  Counting the zinc-proteins encoded in the human genome. , 2006, Journal of proteome research.

[35]  Michael R. Green,et al.  A Cell-Surface Receptor for Lipocalin 24p3 Selectively Mediates Apoptosis and Iron Uptake , 2005, Cell.

[36]  T. Ganz,et al.  Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  H. Ma,et al.  Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis , 2005, Nature.

[38]  Xiaoqing Chang,et al.  Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Riemer,et al.  Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. , 2004, Analytical biochemistry.

[40]  T. Rülicke,et al.  Metal‐responsive transcription factor‐1 (MTF‐1) is essential for embryonic liver development and heavy metal detoxification in the adult liver , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[41]  Stéphane Bézieau,et al.  Identification of SLC39A4, a gene involved in acrodermatitis enteropathica , 2002, Nature Genetics.

[42]  X. Montalban,et al.  Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis , 2001, Journal of Neuroimmunology.

[43]  A. Romeo,et al.  Intracellular Chelation of Iron by Bipyridyl Inhibits DNA Virus Replication , 2001, The Journal of Biological Chemistry.

[44]  W. Degraff,et al.  The use of Zn-desferrioxamine for radioprotection in mice, tissue culture, and isolated DNA. , 1999, Cancer research.

[45]  A S Prasad,et al.  Zinc: an overview. , 1995, Nutrition.