Detailed balance limit of silicon nanowire and nanohole array solar cells

In this proceeding, we use optical modeling and detailed balance analysis to predict the limiting efficiency of nanostructured silicon solar cells based on vertically-aligned nanowire and nanohole arrays. We first use the scattering matrix method to study broadband optical absorption. By incorporating the calculated optical absorption into a detailed balance analysis, we obtain the limiting short circuit current, open circuit voltage, and power conversion efficiency of nanowire and nanohole solar cells. Results show that optimized nanowire and nanohole arrays of 2.33 microns in height have 83% and 97% higher power conversion efficiencies than a thin film with the same height, respectively. Furthermore, we find that the limiting power conversion efficiency is mainly determined by the short circuit current density, which is proportional to the broadband optical absorption.

[1]  Zongfu Yu,et al.  Fundamental limit of light trapping in grating structures. , 2010, Optics express.

[2]  A. Gawlik,et al.  Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. , 2009, Nano letters.

[3]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[4]  Rene Lopez,et al.  Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers. , 2009, Optics express.

[5]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[6]  Yunjie Yan,et al.  Aligned single-crystalline Si nanowire arrays for photovoltaic applications. , 2005, Small.

[7]  Xiao Wei Sun,et al.  Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface , 2011 .

[8]  Bernd Witzigmann,et al.  Light absorption and emission in nanowire array solar cells. , 2010, Optics express.

[9]  Nathan S. Lewis,et al.  High-performance Si microwire photovoltaics , 2011 .

[10]  Dayu Zhou,et al.  Photonic crystal enhanced light-trapping in thin film solar cells , 2008 .

[11]  Min-Yi Shih,et al.  Strong broadband optical absorption in silicon nanowire films , 2007 .

[12]  Yasha Yi,et al.  Efficiency enhancement in Si solar cells by textured photonic crystal back reflector , 2006 .

[13]  K. Sun,et al.  Compound Semiconductor Nanowire Solar Cells , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  D. Whittaker,et al.  Scattering-matrix treatment of patterned multilayer photonic structures , 1999 .

[15]  Shrestha Basu Mallick,et al.  Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells , 2010, Photonics Europe.

[16]  Xiao Wei Sun,et al.  Si nanopillar array optimization on Si thin films for solar energy harvesting , 2009 .

[17]  Zongfu Yu,et al.  Semiconductor nanowire optical antenna solar absorbers. , 2010, Nano letters.

[18]  K. Ho,et al.  High-efficiency calculations for three-dimensional photonic crystal cavities. , 2006, Optics letters.

[19]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[20]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[21]  Michelle L. Povinelli,et al.  Optical absorption enhancement in silicon nanowire and nanohole arrays for photovoltaic applications , 2010, Optics + Photonics for Sustainable Energy.

[22]  Kenji Yamamoto,et al.  Thin-film poly-Si solar cells on glass substrate fabricated at low temperature , 1999 .

[23]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[24]  Dim-Lee Kwong,et al.  Design guidelines of periodic Si nanowire arrays for solar cell application , 2009 .

[25]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[26]  Gang Chen,et al.  Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. , 2010, Nano letters.

[27]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[28]  J. Rand,et al.  Silicon Nanowire Solar Cells , 2007 .

[29]  Kylie R Catchpole,et al.  Nanostructures in photovoltaics , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[31]  H. A. Atwater,et al.  Predicted efficiency of Si wire array solar cells , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[32]  M. Povinelli,et al.  Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. , 2009, Optics express.

[33]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[34]  T. Ishihara,et al.  Quasiguided modes and optical properties of photonic crystal slabs , 2002 .

[35]  Otto L Muskens,et al.  Design of light scattering in nanowire materials for photovoltaic applications. , 2008, Nano letters.

[36]  Xin Wang,et al.  High-performance silicon nanohole solar cells. , 2010, Journal of the American Chemical Society.

[37]  Ying Zhang,et al.  High performance wire‐array silicon solar cells , 2011 .

[38]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .