Iteration Algebras for UnQL Graphs and Completeness for Bisimulation

This paper shows an application of Bloom and Esik's iteration algebras to model graph data in a graph database query language. About twenty years ago, Buneman et al. developed a graph database query language UnQL on the top of a functional meta-language UnCAL for describing and manipulating graphs. Recently, the functional programming community has shown renewed interest in UnCAL, because it provides an efficient graph transformation language which is useful for various applications, such as bidirectional computation. However, no mathematical semantics of UnQL/UnCAL graphs has been developed. In this paper, we give an equational axiomatisation and algebraic semantics of UnCAL graphs. The main result of this paper is to prove that completeness of our equational axioms for UnCAL for the original bisimulation of UnCAL graphs via iteration algebras. Another benefit of algebraic semantics is a clean characterisation of structural recursion on graphs using free iteration algebra.

[1]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[2]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[3]  Dan Suciu,et al.  UnQL: a query language and algebra for semistructured data based on structural recursion , 2000, The VLDB Journal.

[4]  Soichiro Hidaka,et al.  Structural recursion for querying ordered graphs , 2013, ICFP.

[5]  Gordon D. Plotkin,et al.  Complete axioms for categorical fixed-point operators , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[6]  Peter Sewell,et al.  The Algebra of Finite State Processes , 1995 .

[7]  Masahito Hasegawa,et al.  Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi , 1997, TLCA.

[8]  Zoltán Ésik,et al.  Iteration Theories of Synchronization Trees , 1993, Inf. Comput..

[9]  Robin Milner,et al.  A Complete Inference System for a Class of Regular Behaviours , 1984, J. Comput. Syst. Sci..

[10]  Zoltán Ésik Axiomatizing Iteration Categories , 1999, Acta Cybern..

[11]  Zoltán Ésik,et al.  Group Axioms for Iteration , 1999, Inf. Comput..

[12]  Roy L. Crole,et al.  Categories for Types , 1994, Cambridge mathematical textbooks.

[13]  Soichiro Hidaka,et al.  A parameterized graph transformation calculus for finite graphs with monadic branches , 2013, PPDP.

[14]  Dan Suciu,et al.  Adding Structure to Unstructured Data , 1997, ICDT.

[15]  Kazutaka Matsuda,et al.  Marker-Directed Optimization of UnCAL Graph Transformations , 2011, LOPSTR.

[16]  Dan Suciu,et al.  A query language and optimization techniques for unstructured data , 1996, SIGMOD '96.

[17]  Zoltán Ésik,et al.  Solving Polynomial Fixed Point Equations , 1994, MFCS.

[18]  Zoltán Ésik,et al.  Continuous Additive Algebras and Injective Simulations of Synchronization Trees , 2000, J. Log. Comput..

[19]  Marcelo P. Fiore,et al.  The Algebra of Directed Acyclic Graphs , 2013, Computation, Logic, Games, and Quantum Foundations.

[20]  Zoltán Ésik Axiomatizing the Least Fixed Point Operation and Binary Supremum , 2000, CSL.

[21]  Kazutaka Matsuda,et al.  Bidirectionalizing graph transformations , 2010, ICFP '10.

[22]  Masahito Hasegawa,et al.  Models of sharing graphs : a categorical semantics of let and letrec , 1999 .

[23]  Dominic R. Verity,et al.  Traced monoidal categories , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.