A transportable Paul-trap for levitation and accurate positioning of micron-scale particles in vacuum for laser-plasma experiments.

We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.

[1]  M. Donovan,et al.  Proton acceleration by irradiation of isolated spheres with an intense laser pulse. , 2016, Physical review. E.

[2]  J. R. Rygg,et al.  Effect of the mounting membrane on shape in inertial confinement fusion implosions , 2015 .

[3]  T. Kluge,et al.  Robust energy enhancement of ultrashort pulse laser accelerated protons from reduced mass targets , 2014 .

[4]  Z. Sheng,et al.  Dynamics of laser mass-limited foil interaction at ultra-high laser intensities , 2014 .

[5]  Joohwan Kim,et al.  Improved laser-to-proton conversion efficiency in isolated reduced mass targets , 2013 .

[6]  Z. Sheng,et al.  Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target. , 2013, Physical review letters.

[7]  S. Ter-Avetisyan,et al.  Generation of a quasi-monoergetic proton beam from laser-irradiated sub-micron droplets , 2012 .

[8]  D. Batani,et al.  Energy transport and isochoric heating of a low-Z, reduced-mass target irradiated with a high intensity laser pulse , 2011 .

[9]  T. Kluge,et al.  Enhanced laser ion acceleration from mass-limited foils , 2010 .

[10]  T. Sokollik,et al.  Laser-driven ion acceleration using isolated mass-limited spheres , 2010 .

[11]  B. E. Kane Levitated spinning graphene flakes in an electric quadrupole ion trap , 2010, 1006.3774.

[12]  Anharmonic contributions in real RF linear quadrupole traps , 2010, 1001.1403.

[13]  S. Glenzer,et al.  Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons , 2009 .

[14]  V A Gasilov,et al.  Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target. , 2009, Physical review letters.

[15]  T. Sokollik,et al.  Directional laser-driven ion acceleration from microspheres. , 2009, Physical review letters.

[16]  J Osterhoff,et al.  Laser-driven shock acceleration of ion beams from spherical mass-limited targets. , 2009, Physical review letters.

[17]  Z. Němeček,et al.  Interaction between single dust grains and ions or electrons: laboratory measurements and their consequences for the dust dynamics. , 2008, Faraday discussions.

[18]  D W Litzenberg,et al.  Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Masakatsu Murakami,et al.  Nanocluster explosions and quasimonoenergetic spectra by homogeneously distributed impurity ions , 2008 .

[20]  A. Andreev,et al.  Enhanced laser ion acceleration from mass-limited targets , 2008 .

[21]  A. Maximov,et al.  High-Intensity Laser Interactions with Mass-Limited Solid Targets and Implications for Fast-Ignition Experiments on OMEGA EP , 2007 .

[22]  L. Silva,et al.  Kinetics of the collisionless expansion of spherical nanoplasmas. , 2006, Physical review letters.

[23]  T. C. Sangster,et al.  Hot surface ionic line emission and cold K-inner shell emission from petawatt-laser-irradiated Cu foil targets , 2006 .

[24]  T. Sokollik,et al.  Quasimonoenergetic deuteron bursts produced by ultraintense laser pulses. , 2006, Physical review letters.

[25]  Wei Yu,et al.  Direct acceleration of solid-density plasma bunch by ultraintense laser. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  R. Fonseca,et al.  Dynamics and control of shock shells in the coulomb explosion of very large deuterium clusters. , 2005, Physical review letters.

[27]  A. Tielens,et al.  Laboratory Experiments on Rotation and Alignment of the Analogs of Interstellar Dust Grains by Radiation , 2004 .

[28]  K. Witte,et al.  High-intensity laser induced ion acceleration from heavy-water droplets. , 2003, Physical review letters.

[29]  C. Venturini,et al.  Electrodynamic balance for studies of cosmic dust particles , 2001 .

[30]  T. E. Cowan,et al.  Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters , 1999, Nature.

[31]  K. Blaum,et al.  Properties and performance of a quadrupole mass filter used for resonance ionization mass spectrometry , 1998 .

[32]  Evidence of radial-axial motion couplings in an rf stored ion cloud , 1998 .

[33]  G. Werth,et al.  Observation of instabilities in a Paul trap with higher-order anharmonicities , 1995 .

[34]  J. Franzen,et al.  The non-linear resonance ion trap. Part 2. A general theoretical analysis , 1993 .

[35]  S. Stenholm The semiclassical theory of laser cooling , 1986 .

[36]  J. Miller,et al.  Inertial fusion target mounting methods: New fabrication procedures reduce the mounting support perturbation , 1983 .

[37]  G. Lee-Whiting,et al.  Semi-analytical calculations for circular quadrupoles , 1971 .

[38]  D. Denison Operating Parameters of a Quadrupole in a Grounded Cylindrical Housing , 1971 .

[39]  H. Dehmelt,et al.  Radiofrequency Spectroscopy of Stored Ions I: Storage , 1968 .

[40]  R. F. Wuerker,et al.  Electrodynamic Containment of Charged Particles , 1959 .

[41]  I. E. Dayton,et al.  The Measurement of Two‐Dimensional Fields. Part II: Study of a Quadrupole Magnet , 1954 .

[42]  J. Meixner,et al.  Mathieusche Funktionen und Sphäroidfunktionen , 1954 .