Determination of chemical soil properties using diffuse reflectance and ion-exchange resins
暂无分享,去创建一个
[1] C. Hurburgh,et al. Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties , 2001 .
[2] Z. Niu,et al. Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery , 2013 .
[3] Kenneth A. Sudduth,et al. Soil Phosphorus and Potassium Estimation by Reflectance Spectroscopy , 2016 .
[4] Liu Xuemei,et al. Measurement of soil properties using visible and short wave-near infrared spectroscopy and multivariate calibration , 2013 .
[5] L. Kubota,et al. QSPR Study of Passivation by Phenolic Compounds at Platinum and Boron-Doped Diamond Electrodes , 2008 .
[6] R. Teófilo,et al. Multivariate Calibration to Determine Phorbol Esters in Seeds of Jatropha curcas L. Using Near Infrared and Ultraviolet Spectroscopies , 2017 .
[7] S. Scheffer-Basso,et al. Predição da composição química de bermudas (Cynodon spp.) pela espectroscopia de reflectância no infravermelho proximal , 2004 .
[8] F. Douglas Foster,et al. Assessing goodness-of-fit of asset pricing models: The distribution of the maximal R2 , 1997 .
[9] Asa Gholizadeh,et al. Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS) , 2014 .
[10] B. Raij,et al. Disponibilidade de fósforo em solos avaliada por diferentes extratores , 1999 .
[11] Robin Gebbers,et al. Performance of Automated Near‐Infrared Reflectance Spectrometry for Continuous in Situ Mapping of Soil Fertility at Field Scale , 2013 .
[12] N. Shah,et al. In Situ Measurement of Soil Chemical Composition by Near-Infrared Spectroscopy: A Tool Toward Sustainable Vineyard Management , 2013 .
[13] L. Bortolon,et al. Extratores de fósforo para o arroz irrigado em solos adubados com fosfato natural reativo , 2012 .
[14] J. Baerdemaeker,et al. Vis/NIR spectroscopic measurement of selected soil fertility parameters of Cuban agricultural Cambisols , 2014 .
[15] J. Schoenau,et al. Practical applications of ion exchange resins in agricultural and environmental soil research , 2002 .
[16] Meiyan Wang,et al. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy , 2018 .
[17] F. C. Da Silva,et al. Phosphorus availability in soils, determined by different extracting procedures , 1999 .
[18] D. Bouldin,et al. Characterization of soil phosphorus by anion exchange resin adsorption and P32-equilibration , 1955, Plant and Soil.
[19] B. Webb,et al. Comparing Nutrient Availability in Low-Fertility Soils using Ion Exchange Resin Capsules , 2012 .
[20] Abdul Mounem Mouazen,et al. On-line visible and near infrared spectroscopy for in-field phosphorous management , 2016 .
[21] Márcia M. C. Ferreira. Quimiometria: conceitos, métodos e aplicações , 2015 .
[22] E. Arruda,et al. Fósforo extraído por mehlich i e resina de troca aniônica em solos submetidos á calagem = Phosphorus extracted by mehlich i and anion exchange resin in soils subjected to liming , 2015 .
[23] H. Beecher,et al. The potential of near-infrared reflectance spectroscopy for soil analysis — a case study from the Riverine Plain of south-eastern Australia , 2002 .
[24] C. Isendahl,et al. Determining soil properties in Amazonian Dark Earths by reflectance spectroscopy , 2015 .
[25] D. Marx,et al. Direct measurement of soil chemical properties on-the-go using ion-selective electrodes , 2005 .
[26] Sakae Shibusawa,et al. Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping , 2013 .
[27] C. Guerrero,et al. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. , 2008, Soil biology & biochemistry.
[28] Boletim Técnico. Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas , 2009 .
[29] R. Oberti,et al. Effects of measurement technique and sample preparation on NIR spectroscopy analysis of livestock slurry and digestates , 2015 .
[30] J. M. Soriano-Disla,et al. The use of diffuse reflectance mid-infrared spectroscopy for the prediction of the concentration of chemical elements estimated by X-ray fluorescence in agricultural and grazing European soils , 2013 .
[31] Z. D. Souza,et al. Variabilidade espacial de atributos químicos e de produtividade na cultura do café , 2007 .
[32] R. Teófilo,et al. Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression , 2009 .
[33] Ricardo Simão Diniz Dalmolin,et al. Relação entre os constituintes do solo e seu comportamento espectral , 2005 .
[34] Carranza Díaz,et al. Espectroscopía de reflectancia difusa – NIR para la determinación del contenido de agua en el suelo , 2020 .
[35] Mike J. McLaughlin,et al. Evaluation of the performance of portable visible-infrared instruments for the prediction of soil properties , 2017 .
[36] Rodnei Rizzo,et al. Spectral regionalization of tropical soils in the estimation of soil attributes , 2016 .
[37] Gaëtan F. Tremblay,et al. Visible near infrared reflectance spectroscopy to predict soil phosphorus pools in chernozems of Saskatchewan, Canada , 2016 .
[38] Adrian Chappell,et al. On the soil information content of visible–near infrared reflectance spectra , 2011 .
[39] L. Bortolon,et al. Métodos de extração de fósforo e potássio no solo sob sistema plantio direto , 2009 .
[40] R. Taylor,et al. Atomic spectrometry update: review of advances in atomic spectrometry and related techniques , 2015 .
[41] M. M. Ferreira,et al. Nondestructive determination of solids and carotenoids in tomato products by near-infrared spectroscopy and multivariate calibration. , 2005, Analytical chemistry.
[42] Luciano Colpo Gatiboni,et al. Capacidade de predição da disponibilidade de fósforo em solo com aplicação de fosfato solúvel e natural , 2015 .
[43] J. A. Quaggio,et al. Extraction of phosphorus, potassium, calcium, and magnesium from soils by an ion‐exchange resin procedure , 1986 .
[44] M. E. C. Claessen. Manual de métodos de análise de solo. , 1997 .
[45] A. Fernandes,et al. Phosphorus Availability in an Oxisol Amended with Biosolids in a Long-Term Field Experiment , 2012 .
[46] J. Hummelb,et al. On-the-go soil sensors for precision agriculture , 2004 .
[47] B. Nicolai,et al. Postharvest quality of apple predicted by NIR-spectroscopy: Study of the effect of biological variability on spectra and model performance , 2010 .
[48] A. C. G. Júnior,et al. Comparação entre um trocador aniônico de sal de amônio quaternário de quitosana e um trocador comercial na extração de fósforo disponível em solos , 2010 .
[49] Z. N. Brandão,et al. Variabilidade espacial de atributos físico-químicos do solo e seus efeitos na produtividade do algodoeiro , 2014 .
[50] J. Demattê,et al. Spectral analysis of soils from Mogi-Guaçú (SP) Region , 2011 .
[51] Visible and near-infrared spectrophotometer for soil analysis: preliminary results , 2010 .