Determination of chemical soil properties using diffuse reflectance and ion-exchange resins

The management of soil nutrients is essential for sustainable agricultural production. The time requirements for soil nutrient determinations and the high cost per sample are problems that are attributed to traditional laboratory analyses that limit the adoption of precision agriculture techniques. Such problems arise because the sample density that is required to obtain soil fertility maps is greater than that required by conventional agricultural management. The use of radiometric sensors combined with a diffuse reflectance technique is quicker and less expensive than surveying soil fertility. However, the construction of robust models for the prediction of soil chemical properties based on spectral data requires samples with standardized physical characteristics. The objective of this work was to develop a model to predict the soil phosphorus (P), calcium (Ca), magnesium (Mg), and potassium (K) contents based on a multivariate analysis using spectroscopic data in the visible and near-infrared ranges. Ion-exchange resins were used to extract nutrients from the soil, and then diffuse reflectance spectra were collected. Models were constructed using partial least squares (PLS) regression, and the ordered predictors selection (OPS) algorithm was used for the selection of variables. The coefficients of determination (greater than 90%), ratios of the standard deviation to the root mean square error (higher than 2.20), and relative error percentages (lower than 25%) were obtained using the developed models. The mean values that were predicted by the models were significantly different from those measured in the laboratory only for K ions. For the other analyzed ions, including P, Ca and Mg, no significant differences were observed at the 5% level (p > 0.05). The results indicate that the PLS–OPS models based on the diffuse reflectance of ion-exchange resins are reliable for the fast and accurate prediction of these ions.

[1]  C. Hurburgh,et al.  Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties , 2001 .

[2]  Z. Niu,et al.  Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery , 2013 .

[3]  Kenneth A. Sudduth,et al.  Soil Phosphorus and Potassium Estimation by Reflectance Spectroscopy , 2016 .

[4]  Liu Xuemei,et al.  Measurement of soil properties using visible and short wave-near infrared spectroscopy and multivariate calibration , 2013 .

[5]  L. Kubota,et al.  QSPR Study of Passivation by Phenolic Compounds at Platinum and Boron-Doped Diamond Electrodes , 2008 .

[6]  R. Teófilo,et al.  Multivariate Calibration to Determine Phorbol Esters in Seeds of Jatropha curcas L. Using Near Infrared and Ultraviolet Spectroscopies , 2017 .

[7]  S. Scheffer-Basso,et al.  Predição da composição química de bermudas (Cynodon spp.) pela espectroscopia de reflectância no infravermelho proximal , 2004 .

[8]  F. Douglas Foster,et al.  Assessing goodness-of-fit of asset pricing models: The distribution of the maximal R2 , 1997 .

[9]  Asa Gholizadeh,et al.  Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS) , 2014 .

[10]  B. Raij,et al.  Disponibilidade de fósforo em solos avaliada por diferentes extratores , 1999 .

[11]  Robin Gebbers,et al.  Performance of Automated Near‐Infrared Reflectance Spectrometry for Continuous in Situ Mapping of Soil Fertility at Field Scale , 2013 .

[12]  N. Shah,et al.  In Situ Measurement of Soil Chemical Composition by Near-Infrared Spectroscopy: A Tool Toward Sustainable Vineyard Management , 2013 .

[13]  L. Bortolon,et al.  Extratores de fósforo para o arroz irrigado em solos adubados com fosfato natural reativo , 2012 .

[14]  J. Baerdemaeker,et al.  Vis/NIR spectroscopic measurement of selected soil fertility parameters of Cuban agricultural Cambisols , 2014 .

[15]  J. Schoenau,et al.  Practical applications of ion exchange resins in agricultural and environmental soil research , 2002 .

[16]  Meiyan Wang,et al.  Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy , 2018 .

[17]  F. C. Da Silva,et al.  Phosphorus availability in soils, determined by different extracting procedures , 1999 .

[18]  D. Bouldin,et al.  Characterization of soil phosphorus by anion exchange resin adsorption and P32-equilibration , 1955, Plant and Soil.

[19]  B. Webb,et al.  Comparing Nutrient Availability in Low-Fertility Soils using Ion Exchange Resin Capsules , 2012 .

[20]  Abdul Mounem Mouazen,et al.  On-line visible and near infrared spectroscopy for in-field phosphorous management , 2016 .

[21]  Márcia M. C. Ferreira Quimiometria: conceitos, métodos e aplicações , 2015 .

[22]  E. Arruda,et al.  Fósforo extraído por mehlich i e resina de troca aniônica em solos submetidos á calagem = Phosphorus extracted by mehlich i and anion exchange resin in soils subjected to liming , 2015 .

[23]  H. Beecher,et al.  The potential of near-infrared reflectance spectroscopy for soil analysis — a case study from the Riverine Plain of south-eastern Australia , 2002 .

[24]  C. Isendahl,et al.  Determining soil properties in Amazonian Dark Earths by reflectance spectroscopy , 2015 .

[25]  D. Marx,et al.  Direct measurement of soil chemical properties on-the-go using ion-selective electrodes , 2005 .

[26]  Sakae Shibusawa,et al.  Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping , 2013 .

[27]  C. Guerrero,et al.  Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. , 2008, Soil biology & biochemistry.

[28]  Boletim Técnico Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas , 2009 .

[29]  R. Oberti,et al.  Effects of measurement technique and sample preparation on NIR spectroscopy analysis of livestock slurry and digestates , 2015 .

[30]  J. M. Soriano-Disla,et al.  The use of diffuse reflectance mid-infrared spectroscopy for the prediction of the concentration of chemical elements estimated by X-ray fluorescence in agricultural and grazing European soils , 2013 .

[31]  Z. D. Souza,et al.  Variabilidade espacial de atributos químicos e de produtividade na cultura do café , 2007 .

[32]  R. Teófilo,et al.  Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression , 2009 .

[33]  Ricardo Simão Diniz Dalmolin,et al.  Relação entre os constituintes do solo e seu comportamento espectral , 2005 .

[34]  Carranza Díaz,et al.  Espectroscopía de reflectancia difusa – NIR para la determinación del contenido de agua en el suelo , 2020 .

[35]  Mike J. McLaughlin,et al.  Evaluation of the performance of portable visible-infrared instruments for the prediction of soil properties , 2017 .

[36]  Rodnei Rizzo,et al.  Spectral regionalization of tropical soils in the estimation of soil attributes , 2016 .

[37]  Gaëtan F. Tremblay,et al.  Visible near infrared reflectance spectroscopy to predict soil phosphorus pools in chernozems of Saskatchewan, Canada , 2016 .

[38]  Adrian Chappell,et al.  On the soil information content of visible–near infrared reflectance spectra , 2011 .

[39]  L. Bortolon,et al.  Métodos de extração de fósforo e potássio no solo sob sistema plantio direto , 2009 .

[40]  R. Taylor,et al.  Atomic spectrometry update: review of advances in atomic spectrometry and related techniques , 2015 .

[41]  M. M. Ferreira,et al.  Nondestructive determination of solids and carotenoids in tomato products by near-infrared spectroscopy and multivariate calibration. , 2005, Analytical chemistry.

[42]  Luciano Colpo Gatiboni,et al.  Capacidade de predição da disponibilidade de fósforo em solo com aplicação de fosfato solúvel e natural , 2015 .

[43]  J. A. Quaggio,et al.  Extraction of phosphorus, potassium, calcium, and magnesium from soils by an ion‐exchange resin procedure , 1986 .

[44]  M. E. C. Claessen Manual de métodos de análise de solo. , 1997 .

[45]  A. Fernandes,et al.  Phosphorus Availability in an Oxisol Amended with Biosolids in a Long-Term Field Experiment , 2012 .

[46]  J. Hummelb,et al.  On-the-go soil sensors for precision agriculture , 2004 .

[47]  B. Nicolai,et al.  Postharvest quality of apple predicted by NIR-spectroscopy: Study of the effect of biological variability on spectra and model performance , 2010 .

[48]  A. C. G. Júnior,et al.  Comparação entre um trocador aniônico de sal de amônio quaternário de quitosana e um trocador comercial na extração de fósforo disponível em solos , 2010 .

[49]  Z. N. Brandão,et al.  Variabilidade espacial de atributos físico-químicos do solo e seus efeitos na produtividade do algodoeiro , 2014 .

[50]  J. Demattê,et al.  Spectral analysis of soils from Mogi-Guaçú (SP) Region , 2011 .

[51]  Visible and near-infrared spectrophotometer for soil analysis: preliminary results , 2010 .