Quantum invariants can provide sharp Heegaard genus bounds

Using Seifert fibered three-manifold examples of Boileau and Zieschang, we demonstrate that the Reshetikhin-Turaev quantum invariants may be used to provide a sharp lower bound on the Heegaard genus which is strictly larger than the rank of the fundamental group.

[1]  H. Wong The SO(3) quantum invariants: Their density and topological applications , 2007 .

[2]  P. Gilmer Congruence and similarity of 3-manifolds , 2006, math/0612282.

[3]  V. Turaev,et al.  Quantum Invariants of 3-manifolds , 2005 .

[4]  D. Rolfsen Knots and Links , 2003 .

[5]  S. Garoufalidis Applications of quantum invariants in low dimensional topology , 1998 .

[6]  K. Williams,et al.  Gauss and Jacobi sums , 2021, Mathematical Surveys and Monographs.

[7]  M. Lackenby Fox's congruence classes and the quantum-SU(2) invariants of links in 3-manifolds , 1996 .

[8]  N. Habegger,et al.  Topological Auantum Field Theories derived from the Kauffman bracket , 1995 .

[9]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[10]  W. Lickorish THE SKEIN METHOD FOR THREE-MANIFOLD INVARIANTS , 1993 .

[11]  W. Lickorish Distinct 3-manifolds with all SU(2)q invariants the same , 1993 .

[12]  J. Kania-Bartoszyńska Examples of different 3-manifolds with the same invariants of Witten and Reshetikhin–Turaev , 1993 .

[13]  C. Blanchet Invariants on three-manifolds with spin structure , 1992 .

[14]  Paul Melvin,et al.  The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2, C) , 1991 .

[15]  Vladimir Turaev,et al.  Invariants of 3-manifolds via link polynomials and quantum groups , 1991 .

[16]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[17]  Heiner Zieschang,et al.  Heegaard genus of closed orientable Seifert 3-manifolds , 1984 .

[18]  Robion Kirby,et al.  A calculus for framed links inS3 , 1978 .

[19]  F. Waldhausen Heegaard-Zerlegungen der 3-sphäre , 1968 .

[20]  W. B. R. Lickorish,et al.  A Representation of Orientable Combinatorial 3-Manifolds , 1962 .