A novel preparation of Zr–Si intermetallics by electrochemical reduction of ZrSiO4 in molten salts

A method of controllably preparing Zr–Si intermetallics by the electrochemical reduction of ZrSiO4 and ZrSiO4–SiO2 mixed powders in molten CaCl2–NaCl at 800 °C is developed. The final product composition can be controlled by adjusting the molar ratio of Si to Zr in the starting material, and ZrSi, ZrSi2 and their mixture were obtained by this process. The reduction pathway of ZrSiO4 and SiO2 to Zr–Si intermetallics involves several calcium-containing intermediate phases, such as CaSiO3, Ca2SiO4, and calcia-stabilized zirconia (CSZ).

[1]  Jong-Hyeon Lee,et al.  Rapid and cost-effective method for synthesizing zirconium silicides , 2010 .

[2]  G. Chen,et al.  Phase-Tunable Fabrication of Consolidated (α+β)-TiZr Alloys for Biomedical Applications through Molten Salt Electrolysis of Solid Oxides , 2009 .

[3]  D. Fray,et al.  Electrochemical Deoxidation of Solid Zirconium Dioxide in Molten Calcium Chloride , 2009 .

[4]  G. Chen,et al.  Direct and low energy electrolytic co-reduction of mixed oxides to zirconium-based multi-phase hydrogen storage alloys in molten salts , 2009 .

[5]  M. Pownceby,et al.  Preparation of TiC powders and coatings by electrodeoxidation of solid TiO2 in molten salts , 2009 .

[6]  M. Jackson,et al.  The Production of Ti–Mo Alloys from Mixed Oxide Precursors via the FFC Cambridge Process , 2008 .

[7]  D. Fray,et al.  The Electrochemical Reduction of Chromium Sesquioxide in Molten Calcium Chloride under Cathodic Potential Control , 2007 .

[8]  Yong Zhu,et al.  More affordable electrolytic LaNi5-type hydrogen storage powders. , 2007, Chemical communications.

[9]  G. Chen,et al.  A direct electrochemical route from oxide precursors to the terbium–nickel intermetallic compound TbNi5 , 2006 .

[10]  G. Chen,et al.  Electrochemically driven three-phase interlines into insulator compounds: electroreduction of solid SiO2 in molten CaCl2. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  M. Jackson,et al.  Direct electrochemical production of Ti–10W alloys from mixed oxide preform precursors , 2006 .

[12]  G. Chen,et al.  Electrolytic synthesis of TbFe2 from Tb4O7 and Fe2O3 powders in molten CaCl2 , 2006 .

[13]  M. L. Flem,et al.  Composite Zirconium Silicides Through an In Situ Process , 2006 .

[14]  D. Fray,et al.  Electrosynthesis of NbTi and Nb3Sn Superconductors from Oxide Precursors in CaCl2‐Based Melts , 2005 .

[15]  D. Fray,et al.  Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride , 2005 .

[16]  G. Bertrand,et al.  Full potential investigations of structural and electronic properties of ZrSiO4 , 2005 .

[17]  G. Chen,et al.  Electrochemistry at conductor/insulator/electrolyte three-phase interlines: A thin layer model. , 2005, The journal of physical chemistry. B.

[18]  B. Glowacki,et al.  Superconducting Nb3Sn intermetallics made by electrochemical reduction of Nb2O5–SnO2 oxides , 2003 .

[19]  G. Chen,et al.  Voltammetric Studies of the Oxygen-Titanium Binary System in Molten Calcium Chloride , 2002 .

[20]  G. Spinolo,et al.  Combustion synthesis of Zr–Si intermetallic compounds , 1999 .

[21]  F. Saito,et al.  Electrochemical deoxidation of RE–O (RE=Gd, Tb, Dy, Er) solid solutions , 1999 .

[22]  B. Yen X-ray diffraction study of mechanochemical synthesis and formation mechanisms of zirconium carbide and zirconium silicides , 1998 .

[23]  H. Flower,et al.  Phase equilibria and transformations in a Ti-Zr-Si system , 1995 .

[24]  T. Kosolapova,et al.  Conditions of preparation of zirconium silicides , 1968 .