Estimating a bivariate tail: A copula based approach

This paper deals with the problem of estimating the tail of a bivariate distribution function. To this end we develop a general extension of the POT (peaks-over-threshold) method, mainly based on a two-dimensional version of the Pickands–Balkema–de Haan Theorem. We introduce a new parameter that describes the nature of the tail dependence, and we provide a way to estimate it. We construct a two-dimensional tail estimator and study its asymptotic properties. We also present real data examples which illustrate our theoretical results.

[1]  Rolf-Dieter Reiss,et al.  On the distribution of Pickands coordinates in bivariate EV and GP models , 2005 .

[2]  A statistical model for contamination due to long-range atmospheric transport of radionuclides , 1985 .

[3]  R. Reiss,et al.  Statistical Analysis of Extreme Values-with applications to insurance , 1997 .

[4]  P. Strevens Iii , 1985 .

[5]  Fred Espen Benth,et al.  Dynamic copula models for the spark spread , 2011 .

[6]  H. Drees,et al.  Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function , 1998 .

[7]  N. Ng,et al.  Extreme values of ζ′(ρ) , 2007, 0706.1765.

[8]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[9]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[10]  Jonathan A. Tawn,et al.  Statistical Methods for Multivariate Extremes: An Application to Structural Design , 1994 .

[11]  J. Beirlant,et al.  Bias-reduced estimators for bivariate tail modelling , 2011 .

[12]  A. McNeil Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory , 1997, ASTIN Bulletin.

[13]  Christian Y. Robert,et al.  Extreme dependence of multivariate catastrophic losses , 2006 .

[14]  Deyuan Li,et al.  Weighted Approximations of Tail Copula Processes with Application to Testing the Multivariate Extreme Value Condition , 2004 .

[15]  R. M. Dudley,et al.  Weak Convergence of Probabilities on Nonseparable Metric Spaces and Empirical Measures on Euclidean Spaces , 1966 .

[16]  L. Haan,et al.  Weighted approximations to tail copula processes with application to testing the extreme value condition , 2006, math/0611370.

[17]  L. Haan On regular variation and its application to the weak convergence of sample extremes , 1973 .

[18]  L. de Haan,et al.  Bivariate tail estimation: dependence in asymptotic independence , 2004 .

[19]  Arthur Charpentier,et al.  Lower Tail Dependence for Archimedean Copulas: Characterizations and Pitfalls , 2006 .

[20]  A. Ledford,et al.  Statistics for near independence in multivariate extreme values , 1996 .

[21]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[22]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[23]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[24]  A. McNeil Extreme Value Theory for Risk Managers , 1999 .

[25]  Jonathan A. Tawn,et al.  Modelling Dependence within Joint Tail Regions , 1997 .

[26]  Brahim Brahimi Statistics of Bivariate Extreme Values , 2014 .

[27]  René Michel Some notes on multivariate generalized Pareto distributions , 2008 .

[28]  Anthony Ledford,et al.  A new class of models for bivariate joint tails , 2009 .

[29]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[30]  Jonathan A. Tawn,et al.  Concomitant tail behaviour for extremes , 1998, Advances in Applied Probability.

[31]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[32]  Elena Di Bernardino Modélisation de la dépendance et mesures de risque multidimensionnelles , 2011 .

[33]  Martin Schlather,et al.  Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution , 2001 .

[34]  James J. Heckman,et al.  Handbook of Econometrics , 1985 .

[35]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[36]  Nicole A. Lazar,et al.  Statistics of Extremes: Theory and Applications , 2005, Technometrics.

[37]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[38]  Mario V. Wüthrich,et al.  Tail Dependence from a Distributional Point of View , 2003 .

[39]  J. Hüsler,et al.  Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields , 2007 .

[40]  H. Joe Multivariate extreme value distributions , 1997 .

[41]  J. Segers,et al.  A Method of Moments Estimator of Tail Dependence , 2007, 0710.2039.

[42]  Charles M. Goldie,et al.  SLOW VARIATION WITH REMAINDER: THEORY AND APPLICATIONS , 1987 .

[43]  Laurens de Haan,et al.  On maximum likelihood estimation of the extreme value index , 2004, math/0407062.

[44]  Lei Si Ni Ke Resnick.S.I. Extreme values. regular variation. and point processes , 2011 .

[45]  J. Einmahl The empirical distribution function as a tail estimator. , 1990 .

[46]  Mhamed-Ali El-Aroui,et al.  On the use of the peaks over thresholds method for estimating out-of-sample quantiles , 2002 .

[47]  J. Hüsler,et al.  Multivariate Generalized Pareto Distributions , 2011 .

[48]  J. Horowitz Chapter 52 The Bootstrap , 2001 .

[49]  Laurens de Haan,et al.  On regular variation and its application to the weak convergence of sample extremes , 1973 .

[50]  Anne-Laure Fougères,et al.  Estimation of a Bivariate Extreme Value Distribution , 2000 .

[51]  Limiting Tail Dependence Copulas , 2009 .

[52]  Bivariate extension of the Pickands–Balkema–de Haan theorem , 2004 .

[53]  Anthony C. Davison,et al.  Statistics of Extremes , 2015, International Encyclopedia of Statistical Science.

[54]  Liang Peng Estimation of the coefficient of tail dependence in bivariate extremes , 1999 .

[55]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[56]  A. Juri,et al.  Limiting dependence structures for tail events, with applications to credit derivatives , 2006, Journal of Applied Probability.

[57]  A. Juri,et al.  Copula convergence theorems for tail events , 2002 .