“Magnetic Force Microscopy and Energy Loss Imaging of Superparamagnetic Iron Oxide Nanoparticles”

We present quantitative, high spatially resolved magnetic force microscopy imaging of samples based on 11 nm diameter superparamagnetic iron oxide nanoparticles in air at room temperature. By a proper combination of the cantilever resonance frequency shift, oscillation amplitude and phase lag we obtain the tip-sample interaction maps in terms of force gradient and energy dissipation. These physical quantities are evaluated in the frame of a tip-particle magnetic interaction model also including the tip oscillation amplitude. Magnetic nanoparticles are characterized both in bare form, after deposition on a flat substrate, and as magnetically assembled fillers in a polymer matrix, in the form of nanowires. The latter approach makes it possible to reveal the magnetic texture in a composite sample independently of the surface topography.

[1]  A. Satoh,et al.  Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field. , 2005, Journal of colloid and interface science.

[2]  J. Gieraltowski,et al.  The Stoner–Wohlfarth model of ferromagnetism , 2009 .

[3]  Christian Dietz,et al.  Nanomechanical coupling enables detection and imaging of 5 nm superparamagnetic particles in liquid , 2011, Nanotechnology.

[4]  D. Fiorani,et al.  Magnetic properties of maghemite nanoparticle systems: surface anisotropy and interparticle interaction effects , 2002 .

[5]  A. Caneschi,et al.  Nanosized iron oxide particles entrapped in pseudo-single crystals of γ-cyclodextrin , 2004 .

[6]  Peter Eaton,et al.  New insights into the use of magnetic force microscopy to discriminate between magnetic and nonmagnetic nanoparticles , 2010, Nanotechnology.

[7]  T. Ando,et al.  Numerical simulation of chainlike cluster movement of feeble magnetic particles by induced magnetic dipole moment under high magnetic fields , 2009, Science and technology of advanced materials.

[8]  George C. Lisensky,et al.  PREPARATION AND PROPERTIES OF AN AQUEOUS FERROFLUID , 1999 .

[9]  Ricardo Garcia,et al.  Nanoscale compositional mapping with gentle forces. , 2007, Nature materials.

[10]  Davide Ricci,et al.  Recognizing and avoiding artifacts in atomic force microscopy imaging. , 2011, Methods in molecular biology.

[11]  P. Lukanov,et al.  Size effects in monodomain magnetite based ferrofluids , 2008 .

[12]  Javier Tamayo,et al.  Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy , 1998 .

[13]  H. Saito,et al.  Study on magnetite nanoparticles synthesized by chemical method , 2007 .

[14]  A. Philipse,et al.  Atomic force microscopy and magnetic force microscopy study of model colloids. , 2002, Journal of colloid and interface science.

[15]  Sharon Schreiber,et al.  Magnetic force microscopy of superparamagnetic nanoparticles. , 2008, Small.

[16]  L. Tjeng,et al.  Orbitally driven spin-singlet dimerization in S=1 La4Ru2O10. , 2006, Physical review letters.

[17]  F. Romanato,et al.  Growth of multi-wall and single-wall carbon nanotubes with in situ high vacuum catalyst deposition , 2004 .

[18]  G. Palasantzas,et al.  Magnetic force microscopy on cobalt nanocluster films , 2004 .

[19]  P. Eames,et al.  Moment determination of magnetic force microscope tips by imaging superparamagnetic films , 2004 .

[20]  A. Athanassiou,et al.  Nanochains Formation of Superparamagnetic Nanoparticles , 2011 .

[21]  Ricardo Garcia,et al.  Identification of nanoscale dissipation processes by dynamic atomic force microscopy. , 2006, Physical review letters.

[22]  J. E. Stern,et al.  Magnetic force microscopy: General principles and application to longitudinal recording media , 1990 .

[23]  Ricardo Garcia,et al.  Theory of multifrequency atomic force microscopy. , 2008, Physical review letters.

[24]  P. Zhdan,et al.  Magnetic Force Microscope Contrast Simulation for Low-Coercive Ferromagnetic and Superparamagnetic Nanoparticles in an External Magnetic Field , 2007, IEEE Transactions on Magnetics.

[25]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .

[26]  A. Satoh,et al.  Two-dimensional Monte Carlo simulations of a polydisperse colloidal dispersion composed of ferromagnetic particles for the case of no external magnetic field. , 2004, Journal of colloid and interface science.

[27]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[28]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[29]  Luis M Liz-Marzán,et al.  Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[30]  T. Akimoto,et al.  (s)1/2=1.96TeVにおけるp反p衝突で305pb‐1を持つレプトン+光子+X事象での新物理学の探索 , 2006 .

[31]  Shouheng Sun Self-Assembled FePt Nanoparticle Arrays as Potential High-Density Recording Media , 2007 .

[32]  Roger Proksch,et al.  Magnetic force microscopy of the submicron magnetic assembly in a magnetotactic bacterium , 1995 .

[33]  A. Athanassiou,et al.  Dynamical formation of spatially localized arrays of aligned nanowires in plastic films with magnetic anisotropy. , 2010, ACS nano.

[34]  Arvind Raman,et al.  Analytical formulas and scaling laws for peak interaction forces in dynamic atomic force microscopy , 2007 .

[35]  F Kümmerlen,et al.  Magnetization switching of submicrometer Co dots induced by a magnetic force microscope tip , 1998 .

[36]  A. Falqui,et al.  Maghemite polymer nanocomposites with modulated magnetic properties , 2007 .

[37]  D. Godovsky Device Applications of Polymer-Nanocomposites , 2000 .

[38]  Ricardo Garcia,et al.  Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy , 2006, Nanotechnology.

[39]  J. Chang,et al.  Biopolymers PVA hydrogels anionic polymerisation nanocomposites , 2000 .

[40]  Xin Xu,et al.  Compositional contrast of biological materials in liquids using the momentary excitation of higher eigenmodes in dynamic atomic force microscopy. , 2009, Physical review letters.

[41]  Andreas Radbruch,et al.  High gradient magnetic cell separation with MACS. , 1990, Cytometry.

[42]  Gregory D. Scholes,et al.  Comprehensive nanoscience and technology , 2010 .

[43]  A. Athanassiou,et al.  Formation and microscopic investigation of iron oxide aligned nanowires into polymeric nanocomposite films , 2010, Microscopy research and technique.

[44]  Arvind Raman,et al.  Chaos in atomic force microscopy. , 2006, Physical review letters.