Optimisation multi-objectifs à base de métamodèle pour des applications en mise en forme des métaux

To apply multi-objective optimization algorithms to highly time expensive metal forming applications, the coupling of the NSGA-II genetic algorithm proposed by Deb with metamodels based on the Meshless Finite Difference Method (MFDM) proposed by Liszka and Orkisz is investigated. The importance of iteratively improving the metamodel during the optimization iterations is highlighted, as well as the capability to accurately determine the Pareto optimal fronts of the studied problems within less than hundred calculations.

[1]  Thien Tho Do Optimisation de forme en forgeage 3D , 2006 .

[2]  Józef Krok,et al.  An Extended Approach to Error Control in Experimental and Numerical Data Smoothing and Evaluation Using the Meshless FDM , 2002 .

[3]  Thomas Bäck,et al.  Metamodel-Assisted Evolution Strategies , 2002, PPSN.

[4]  T. Liszka,et al.  The finite difference method at arbitrary irregular grids and its application in applied mechanics , 1980 .

[5]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[6]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[7]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[8]  P. Villon,et al.  Moving least squares response surface approximation: Formulation and metal forming applications , 2005 .

[9]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[10]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[11]  Raphael T. Haftka,et al.  Response surface approximation of Pareto optimal front in multi-objective optimization , 2007 .

[12]  Michael T. M. Emmerich,et al.  Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels , 2006, IEEE Transactions on Evolutionary Computation.

[13]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[14]  Giuseppe Ingarao,et al.  Internal pressure and counterpunch action design in Y-shaped tube hydroforming processes: A multi-objective optimisation approach , 2009 .