Structures of the Bacterial Ribosome at 3.5 Å Resolution

We describe two structures of the intact bacterial ribosome from Escherichia coli determined to a resolution of 3.5 angstroms by x-ray crystallography. These structures provide a detailed view of the interface between the small and large ribosomal subunits and the conformation of the peptidyl transferase center in the context of the intact ribosome. Differences between the two ribosomes reveal a high degree of flexibility between the head and the rest of the small subunit. Swiveling of the head of the small subunit observed in the present structures, coupled to the ratchet-like motion of the two subunits observed previously, suggests a mechanism for the final movements of messenger RNA (mRNA) and transfer RNAs (tRNAs) during translocation.

[1]  S. Joseph,et al.  The A-site Finger in 23 S rRNA Acts as a Functional Attenuator for Translocation* , 2006, Journal of Biological Chemistry.

[2]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[3]  E. Westhof,et al.  Binding of Neomycin-Class Aminoglycoside Antibiotics to Mutant Ribosomes with Alterations in the A Site of 16S rRNA , 2006, Antimicrobial Agents and Chemotherapy.

[4]  R. Sawers Evidence for novel processing of the anaerobically inducible dicistronic focA‐pfl mRNA transcript in Escherichia coli , 2005, Molecular microbiology.

[5]  Thomas A Steitz,et al.  Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. , 2005, Molecular cell.

[6]  M. Ehrenberg,et al.  Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs , 2005, Journal of biology.

[7]  V. Ramakrishnan,et al.  First published online as a Review in Advance on February 25, 2005 STRUCTURAL INSIGHTS INTO TRANSLATIONAL , 2022 .

[8]  Joachim Frank,et al.  Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. , 2005, Molecular cell.

[9]  Joachim Frank,et al.  The Cryo-EM Structure of a Translation Initiation Complex from Escherichia coli , 2005, Cell.

[10]  R. Green,et al.  Multiple effects of S13 in modulating the strength of intersubunit interactions in the ribosome during translation. , 2005, Journal of molecular biology.

[11]  T. Rapoport,et al.  Architecture of the ribosome-channel complex derived from native membranes. , 2005, Journal of molecular biology.

[12]  Pascale Romby,et al.  Translational Operator of mRNA on the Ribosome: How Repressor Proteins Exclude Ribosome Binding , 2005, Science.

[13]  F. Schluenzen,et al.  X‐ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit , 2005, The EMBO journal.

[14]  Paul F Agris,et al.  The role of modifications in codon discrimination by tRNALysUUU , 2004, Nature Structural &Molecular Biology.

[15]  J. S. Weinger,et al.  Substrate-assisted catalysis of peptide bond formation by the ribosome , 2004, Nature Structural &Molecular Biology.

[16]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[17]  T. Steitz,et al.  The contribution of metal ions to the structural stability of the large ribosomal subunit. , 2004, RNA.

[18]  H. Noller,et al.  Creating ribosomes with an all-RNA 30S subunit P site. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Frank,et al.  Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: Functional implications , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[21]  Rachel Green,et al.  The Active Site of the Ribosome Is Composed of Two Layers of Conserved Nucleotides with Distinct Roles in Peptide Bond Formation and Peptide Release , 2004, Cell.

[22]  Annette Sievers,et al.  The ribosome as an entropy trap. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Remme,et al.  Definition of bases in 23S rRNA essential for ribosomal subunit association. , 2004, RNA.

[24]  J. Ballesta,et al.  Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation , 2004, The EMBO journal.

[25]  David E Draper,et al.  A guide to ions and RNA structure. , 2004, RNA.

[26]  Bruno P. Klaholz,et al.  Visualization of release factor 3 on the ribosome during termination of protein synthesis , 2004, Nature.

[27]  Joachim Frank,et al.  Structure of the signal recognition particle interacting with the elongation-arrested ribosome , 2004, Nature.

[28]  M. Rodnina,et al.  Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. , 2004, Molecular cell.

[29]  C. Gualerzi,et al.  The translation initiation functions of IF2: targets for thiostrepton inhibition. , 2004, Journal of molecular biology.

[30]  R. Green,et al.  EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding. , 2004, RNA.

[31]  W. B. Arendall,et al.  RNA backbone is rotameric , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Steitz,et al.  Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. , 2003, RNA.

[33]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[34]  Scott M Stagg,et al.  Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy , 2003, Nature Structural Biology.

[35]  Daniel R Southworth,et al.  Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex. , 2003, Molecular cell.

[36]  Joachim Frank,et al.  Locking and Unlocking of Ribosomal Motions , 2003, Cell.

[37]  Måns Ehrenberg,et al.  Peptidyl-tRNA Regulates the GTPase Activity of Translation Factors , 2003, Cell.

[38]  William K. Ridgeway,et al.  X-ray crystal structures of the WT and a hyper-accurate ribosome from Escherichia coli , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Aswad,et al.  Deamidation and isoaspartate formation in proteins: unwanted alterations or surreptitious signals? , 2003, Cellular and Molecular Life Sciences CMLS.

[40]  Wolfgang Wintermeyer,et al.  An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. , 2003, Molecular cell.

[41]  Joachim Frank,et al.  Electron microscopy of functional ribosome complexes. , 2003, Biopolymers.

[42]  J. Frank,et al.  A cryo-electron microscopic study of ribosome-bound termination factor RF2 , 2003, Nature.

[43]  Måns Ehrenberg,et al.  Structure of the Escherichia coli ribosomal termination complex with release factor 2 , 2003, Nature.

[44]  Thomas A Steitz,et al.  The structural basis of large ribosomal subunit function. , 2002, Annual review of biochemistry.

[45]  Frank Schluenzen,et al.  Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. , 2003, Molecular cell.

[46]  Maria Jesus Martin,et al.  The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 , 2003, Nucleic Acids Res..

[47]  V. Ramakrishnan,et al.  Selection of tRNA by the Ribosome Requires a Transition from an Open to a Closed Form , 2002, Cell.

[48]  M. Heel,et al.  Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex , 2002, Nature Structural Biology.

[49]  Wolfgang Wintermeyer,et al.  GTPase activation of elongation factors Tu and G on the ribosome. , 2002, Biochemistry.

[50]  J. Doudna,et al.  Specificity of RNA–RNA helix recognition , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Thomas A Steitz,et al.  Structural insights into peptide bond formation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Wolfgang Wintermeyer,et al.  Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. , 2002, Molecular cell.

[53]  V. Ramakrishnan,et al.  Ribosome Structure and the Mechanism of Translation , 2002, Cell.

[54]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[55]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[56]  A. Sali,et al.  Architecture of the Protein-Conducting Channel Associated with the Translating 80S Ribosome , 2001, Cell.

[57]  E Westhof,et al.  Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. , 2001, Structure.

[58]  Harry F. Noller,et al.  The Path of Messenger RNA through the Ribosome , 2001, Cell.

[59]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[61]  N. Robinson,et al.  Molecular clocks. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[62]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[63]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[64]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[65]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[66]  Joachim Frank,et al.  A ratchet-like inter-subunit reorganization of the ribosome during translocation , 2000, Nature.

[67]  S. Subramaniam,et al.  Continuum electrostatic methods applied to pH-dependent properties of antibody-antigen association. , 2000, Methods.

[68]  M. Heel,et al.  Large-Scale Movement of Elongation Factor G and Extensive Conformational Change of the Ribosome during Translocation , 2000, Cell.

[69]  J. Frank,et al.  Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. , 2000, Methods in enzymology.

[70]  R. Green,et al.  Base-pairing between 23S rRNA and tRNA in the ribosomal A site. , 1999, Molecular cell.

[71]  H. Noller,et al.  Identification of an RNA-protein bridge spanning the ribosomal subunit interface. , 1999, Science.

[72]  D. Aswad,et al.  Isoaspartate in Ribosomal Protein S11 ofEscherichia coli , 1999, Journal of bacteriology.

[73]  P. Khaitovich,et al.  Characterization of functionally active subribosomal particles from Thermus aquaticus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[74]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[75]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[76]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[77]  J. Doudna,et al.  A magnesium ion core at the heart of a ribozyme domain , 1997, Nature Structural Biology.

[78]  P. Hagerman,et al.  Flexibility of RNA. , 1997, Annual review of biophysics and biomolecular structure.

[79]  H. Noller,et al.  Ribosomes and translation. , 1997, Annual review of biochemistry.

[80]  Robert J. Stern,et al.  The Origin of the Great Bend of the Nile from SIR-C/X-SAR Imagery , 1996, Science.

[81]  C. Kundrot,et al.  RNA Tertiary Structure Mediation by Adenosine Platforms , 1996, Science.

[82]  J. Kowalak,et al.  β‐Methylthio‐aspartic acid: Identification of a novel posttranslational modification in ribosomal protein S12 from escherichia coli , 1996, Protein science : a publication of the Protein Society.

[83]  H. Noller,et al.  A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome , 1995, Nature.

[84]  G. Sawers,et al.  Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the ArcA and FNR proteins , 1992, Journal of bacteriology.

[85]  S. Clarke,et al.  Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. , 1989, The Journal of biological chemistry.

[86]  H. Noller,et al.  Interaction of ribosomal proteins S5, S6, S11, S12, S18 and S21 with 16 S rRNA. , 1988, Journal of molecular biology.

[87]  A. Spirin Structural dynamic aspects of protein synthesis on ribosomes. , 1987, Biochimie.

[88]  H. Noller,et al.  Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. , 1987, Biochimie.

[89]  W. Wintermeyer,et al.  Affinities of tRNA binding sites of ribosomes from Escherichia coli. , 1986, Biochemistry.

[90]  M. Heel,et al.  Exact filters for general geometry three dimensional reconstruction , 1986 .

[91]  W. Tate,et al.  The Escherichia coli ribosomal protein L11 suppresses release factor 2 but promotes the release factor 1 activities in peptide chain termination. , 1983, The Journal of biological chemistry.

[92]  M. Grunberg‐Manago,et al.  Analysis of cosolvent and divalent cation effects on association equilibrium and activity of ribosomes. , 1980, Biochemistry.

[93]  C. Kurland,et al.  Nucleoside triphosphate regeneration decreases the frequency of translation errors. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[94]  J. Brosius,et al.  The primary structure of protein L16 located at the peptidyltransferase center of Escherichia coli ribosomes , 1976, FEBS letters.

[95]  J. Frank,et al.  Signal-to-noise ratio of electron micrographs obtained by cross correlation , 1975, Nature.

[96]  J. Shine,et al.  Determinant of cistron specificity in bacterial ribosomes , 1975, Nature.

[97]  W. Held,et al.  Reconstitution of Escherichia coli 30 S ribosomal subunits from purified molecular components. , 1973, The Journal of biological chemistry.

[98]  R. Wolfenden,et al.  1-Methyladenosine. Dimroth rearrangement and reversible reduction. , 1968, Biochemistry.

[99]  R. Monro Catalysis of peptide bond formation by 50 S ribosomal subunits from Escherichia coli. , 1967, Journal of molecular biology.