The dichotomy between structure and randomness, arithmetic progressions, and the primes

A famous theorem of Szemeredi asserts that all subsets of the integers with positive upper density will contain arbitrarily long arithmetic progressions. There are many different proofs of this deep theorem, but they are all based on a fundamental dichotomy between structure and randomness, which in turn leads (roughly speaking) to a decomposition of any object into a structured (low-complexity) component and a random (discorrelated) component. Important examples of these types of decompositions include the Furstenberg structure theorem and the Szemeredi regularity lemma. One recent application of this dichotomy is the result of Green and Tao establishing that the prime numbers contain arbitrarily long arithmetic progressions (despite having density zero in the integers). The power of this dichotomy is evidenced by the fact that the Green�Tao theorem requires surprisingly little technology from analytic number theory, relying instead almost exclusively on manifestations of this dichotomy such as Szemeredi�s theorem. In this paper we survey various manifestations of this dichotomy in combinatorics, harmonic analysis, ergodic theory, and number theory. As we hope to emphasize here, the underlying themes in these arguments are remarkably similar even though the contexts are radically different.

[1]  RodlVojtech,et al.  Regular Partitions of Hypergraphs , 2007 .

[2]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[3]  B. Szegedy,et al.  Szemerédi’s Lemma for the Analyst , 2007 .

[4]  B. Green Long arithmetic progressions of primes , 2005, math/0508063.

[5]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[6]  T. Tao,et al.  New bounds for Szemeredi's theorem, II: A new bound for r_4(N) , 2006, math/0610604.

[7]  Ben Green,et al.  QUADRATIC UNIFORMITY OF THE MOBIUS FUNCTION , 2006, math/0606087.

[8]  Vojtech Rödl,et al.  The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.

[9]  Vojtech Rödl,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.

[10]  T. Tao Szemerédi's regularity lemma revisited , 2005, Contributions Discret. Math..

[11]  T. Tao A variant of the hypergraph removal lemma , 2005, J. Comb. Theory A.

[12]  T. Tao A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2004, Electron. J. Comb..

[13]  Tamar Ziegler,et al.  Universal characteristic factors and Furstenberg averages , 2004, math/0403212.

[14]  B. Host Progressions arithmétiques dans les nombres premiers, d'après B. Green et T. Tao , 2006, math/0609795.

[15]  Noga Alon,et al.  A characterization of the (natural) graph properties testable with one-sided error , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[16]  Bryna Kra,et al.  The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view , 2005 .

[17]  T. Tao Obstructions to uniformity, and arithmetic patterns in the primes , 2005, math/0505402.

[18]  J. Pintz,et al.  Small gaps between primes exist , 2005, math/0505300.

[19]  D. Goldston,et al.  Small Gaps Between Primes I , 2005, math/0504336.

[20]  Bryna Kra,et al.  Multiple recurrence and nilsequences , 2005 .

[21]  T. Tao The Gaussian primes contain arbitrarily shaped constellations , 2005, math/0501314.

[22]  Ben Green,et al.  Finite field models in additive combinatories , 2004, BCC.

[23]  Bryna Kra,et al.  Nonconventional ergodic averages and nilmanifolds , 2005 .

[24]  D. Goldston,et al.  Higher correlations of divisor sums related to primes II: variations of the error term in the prime number theorem , 2004, math/0412366.

[25]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[26]  B. Green A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.

[27]  B. Green Roth's theorem in the primes , 2003, math/0302311.

[28]  D. Goldston,et al.  Higher correlations of divisor sums related to primes III: k-correlations , 2002, math/0209102.

[29]  Vojtech Rödl,et al.  Extremal problems on set systems , 2002, Random Struct. Algorithms.

[30]  D. Goldston,et al.  Higher correlations of divisor sums related to primes I: triple correlations , 2001, math/0111212.

[31]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[32]  Bryna Kra,et al.  Convergence of Conze–Lesigne averages , 2001, Ergodic Theory and Dynamical Systems.

[33]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[34]  Jean Bourgain,et al.  On Triples in Arithmetic Progression , 1999 .

[35]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[36]  W. T. Gowers,et al.  A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .

[37]  A. Leibman Polynomial Sequences in Groups , 1998 .

[38]  Christoph Thiele,et al.  $L^p$ estimates on the bilinear Hilbert transform for $2 < p < \infty$ , 1997 .

[39]  Peter March,et al.  Convergence in ergodic theory and probability , 1996 .

[40]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[41]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[42]  Peter J. Cameron,et al.  Some sequences of integers , 1989, Discret. Math..

[43]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[44]  J. Bourgain,et al.  A szemerédi type theorem for sets of positive density inRk , 1986 .

[45]  M. A. Clements Terence Tao , 1984 .

[46]  D. Ornstein,et al.  The ergodic theoretical proof of Szemerédi's theorem , 1982 .

[47]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[48]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[49]  J. Komlos A generalization of a problem of Steinhaus , 1967 .

[50]  P. Varnavides,et al.  On Certain Sets of Positive Density , 1959 .

[51]  K. F. Roth On Certain Sets of Integers , 1953 .

[52]  R. Salem,et al.  On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. G. Corput Über Summen von Primzahlen und Primzahlquadraten , 1939 .

[54]  J. Littlewood,et al.  Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes , 1923 .

[55]  A SZEMERI DI TYPE THEOREM FOR SETS OF POSITIVE DENSITY IN R k , 2022 .