The dichotomy between structure and randomness, arithmetic progressions, and the primes
暂无分享,去创建一个
[1] RodlVojtech,et al. Regular Partitions of Hypergraphs , 2007 .
[2] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[3] B. Szegedy,et al. Szemerédi’s Lemma for the Analyst , 2007 .
[4] B. Green. Long arithmetic progressions of primes , 2005, math/0508063.
[5] Terence Tao,et al. Additive combinatorics , 2007, Cambridge studies in advanced mathematics.
[6] T. Tao,et al. New bounds for Szemeredi's theorem, II: A new bound for r_4(N) , 2006, math/0610604.
[7] Ben Green,et al. QUADRATIC UNIFORMITY OF THE MOBIUS FUNCTION , 2006, math/0606087.
[8] Vojtech Rödl,et al. The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.
[9] Vojtech Rödl,et al. Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.
[10] T. Tao. Szemerédi's regularity lemma revisited , 2005, Contributions Discret. Math..
[11] T. Tao. A variant of the hypergraph removal lemma , 2005, J. Comb. Theory A.
[12] T. Tao. A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2004, Electron. J. Comb..
[13] Tamar Ziegler,et al. Universal characteristic factors and Furstenberg averages , 2004, math/0403212.
[14] B. Host. Progressions arithmétiques dans les nombres premiers, d'après B. Green et T. Tao , 2006, math/0609795.
[15] Noga Alon,et al. A characterization of the (natural) graph properties testable with one-sided error , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[16] Bryna Kra,et al. The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view , 2005 .
[17] T. Tao. Obstructions to uniformity, and arithmetic patterns in the primes , 2005, math/0505402.
[18] J. Pintz,et al. Small gaps between primes exist , 2005, math/0505300.
[19] D. Goldston,et al. Small Gaps Between Primes I , 2005, math/0504336.
[20] Bryna Kra,et al. Multiple recurrence and nilsequences , 2005 .
[21] T. Tao. The Gaussian primes contain arbitrarily shaped constellations , 2005, math/0501314.
[22] Ben Green,et al. Finite field models in additive combinatories , 2004, BCC.
[23] Bryna Kra,et al. Nonconventional ergodic averages and nilmanifolds , 2005 .
[24] D. Goldston,et al. Higher correlations of divisor sums related to primes II: variations of the error term in the prime number theorem , 2004, math/0412366.
[25] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.
[26] B. Green. A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.
[27] B. Green. Roth's theorem in the primes , 2003, math/0302311.
[28] D. Goldston,et al. Higher correlations of divisor sums related to primes III: k-correlations , 2002, math/0209102.
[29] Vojtech Rödl,et al. Extremal problems on set systems , 2002, Random Struct. Algorithms.
[30] D. Goldston,et al. Higher correlations of divisor sums related to primes I: triple correlations , 2001, math/0111212.
[31] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[32] Bryna Kra,et al. Convergence of Conze–Lesigne averages , 2001, Ergodic Theory and Dynamical Systems.
[33] W. T. Gowers,et al. A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .
[34] Jean Bourgain,et al. On Triples in Arithmetic Progression , 1999 .
[35] Alan M. Frieze,et al. Quick Approximation to Matrices and Applications , 1999, Comb..
[36] W. T. Gowers,et al. A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .
[37] A. Leibman. Polynomial Sequences in Groups , 1998 .
[38] Christoph Thiele,et al. $L^p$ estimates on the bilinear Hilbert transform for $2 < p < \infty$ , 1997 .
[39] Peter March,et al. Convergence in ergodic theory and probability , 1996 .
[40] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[41] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[42] Peter J. Cameron,et al. Some sequences of integers , 1989, Discret. Math..
[43] Fan Chung Graham,et al. Quasi-random graphs , 1988, Comb..
[44] J. Bourgain,et al. A szemerédi type theorem for sets of positive density inRk , 1986 .
[45] M. A. Clements. Terence Tao , 1984 .
[46] D. Ornstein,et al. The ergodic theoretical proof of Szemerédi's theorem , 1982 .
[47] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[48] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[49] J. Komlos. A generalization of a problem of Steinhaus , 1967 .
[50] P. Varnavides,et al. On Certain Sets of Positive Density , 1959 .
[51] K. F. Roth. On Certain Sets of Integers , 1953 .
[52] R. Salem,et al. On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1942, Proceedings of the National Academy of Sciences of the United States of America.
[53] J. G. Corput. Über Summen von Primzahlen und Primzahlquadraten , 1939 .
[54] J. Littlewood,et al. Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes , 1923 .
[55] A SZEMERI DI TYPE THEOREM FOR SETS OF POSITIVE DENSITY IN R k , 2022 .