Calcium and aluminum-based fillers as flame-retardant additives in silicone matrices. III. Investigations on fire reaction

[1]  É. Guillaume,et al.  Aerosols emitted by the combustion of polymers containing nanoparticles , 2012, Journal of Nanoparticle Research.

[2]  J. Lopez‐Cuesta,et al.  Calcium and aluminium-based fillers as flame-retardant additives in silicone matrices II. Analyses on composite residues from an industrial-based pyrolysis test , 2011 .

[3]  T. Richard Hull,et al.  Fire retardant action of mineral fillers , 2011 .

[4]  R. Sonnier,et al.  Combining cone calorimeter and PCFC to determine the mode of action of flame‐retardant additives , 2011 .

[5]  R. Lyon,et al.  Influence of physical properties on polymer flammability in the cone calorimeter , 2011 .

[6]  F. Ganachaud,et al.  High residue contents indebted by platinum and silica synergistic action during the pyrolysis of silicone formulations. , 2011, ACS applied materials & interfaces.

[7]  Claire Longuet,et al.  Calcium and aluminium-based fillers as flame-retardant additives in silicone matrices. I. Blend preparation and thermal properties , 2010 .

[8]  Claire Longuet,et al.  Flame retardancy of silicone-based materials , 2009 .

[9]  R. Shanks,et al.  Fire performance of poly(dimethyl siloxane) composites evaluated by cone calorimetry , 2008 .

[10]  Patrick Van Hees,et al.  On the intumescence of ethylene-acrylate copolymers blended with chalk and silicone , 2007 .

[11]  Bernhard Schartel,et al.  Development of fire‐retarded materials—Interpretation of cone calorimeter data , 2007 .

[12]  Matthew F. Bundy,et al.  Cone calorimeter analysis of UL‐94 V‐rated plastics , 2007 .

[13]  Yi-bing Cheng,et al.  Thermal stability and flammability of silicone polymer composites , 2006 .

[14]  Thomas Hjertberg,et al.  Distribution of calcium carbonate and silicone elastomer in a flame retardant system based on ethylene–acrylate copolymer, chalk and silicone elastomer and its effect on flame retardant properties , 2006 .

[15]  A. Hermansson,et al.  Linking the flame‐retardant mechanisms of an ethylene‐acrylate copolymer, chalk and silicone elastomer system with its intumescent behaviour , 2005 .

[16]  Richard E. Lyon,et al.  Pyrolysis combustion flow calorimetry , 2004 .

[17]  H. Ohtani,et al.  Flame retardant mechanism of polydimethylsiloxane material containing platinum compound studied by analytical pyrolysis techniques and alkaline hydrolysis gas chromatography , 2003 .

[18]  Thomas Hjertberg,et al.  The flame retardant mechanism of polyolefins modified with chalk and silicone elastomer , 2003 .

[19]  G. Camino,et al.  Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms , 2002 .

[20]  T. S. Radhakrishnan New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis–GC studies: Thermal degradation of polydimethylsiloxanes , 1999 .

[21]  Fu‐Yu Hshieh,et al.  Experimental study on the radiative ignition of silicones , 1998 .

[22]  Fu-Yu Hshieh,et al.  Shielding effects of silica-ash layer on the combustion of silicones and their possible applications on the fire retardancy of organic polymers , 1998 .

[23]  Richard D. Peacock,et al.  Heat release rate: The single most important variable in fire hazard☆ , 1990 .

[24]  M. Rezac,et al.  The effect of phenyl content on the degradation of poly(dimethyl diphenyl) siloxane copolymers , 2001 .

[25]  Pradyot Patnaik,et al.  Handbook of Inorganic Chemicals , 1997 .

[26]  R. Buch Rates of heat release and related fire parameters for silicones , 1991 .

[27]  Maclaury Influence of Platinum Fillers and Cure on the Flammability of Peroxide Cured Silicone-Rubber , 1979 .