Embeddings and Ramsey numbers of sparse κ-uniform hypergraphs

Chvátal, Rödl, Szemerédi and Trotter [3] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. In [6,23] the same result was proved for 3-uniform hypergraphs. Here we extend this result to κ-uniform hypergraphs for any integer κ ≥ 3. As in the 3-uniform case, the main new tool which we prove and use is an embedding lemma for κ-uniform hypergraphs of bounded maximum degree into suitable κ-uniform ‘quasi-random’ hypergraphs.

[1]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[2]  Vojtech Rödl,et al.  The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory, Ser. B.

[3]  J. Spencer Ramsey Theory , 1990 .

[4]  Vojtech Rödl,et al.  On graphs with linear Ramsey numbers , 2000, J. Graph Theory.

[5]  Richard H. Schelp,et al.  Monochromatic Hamiltonian Berge-cycles in colored complete uniform hypergraphs , 2008, J. Comb. Theory, Ser. B.

[6]  Peter Keevash,et al.  A hypergraph blow‐up lemma , 2010, Random Struct. Algorithms.

[7]  Vojtech Rödl,et al.  Regularity properties for triple systems , 2003, Random Struct. Algorithms.

[8]  Vojtech Rödl,et al.  On the Ramsey Number of Sparse 3-Graphs , 2008, Graphs Comb..

[9]  Vojtech Rödl,et al.  The Ramsey number for hypergraph cycles I , 2006, J. Comb. Theory, Ser. A.

[10]  Vojtech Rödl,et al.  On Ramsey numbers of uniform hypergraphs with given maximum degree , 2006, J. Comb. Theory A.

[11]  Daniela Kühn,et al.  Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree , 2006, J. Comb. Theory, Ser. B.

[12]  Vojtech Rödl,et al.  Extremal problems on set systems , 2002, Random Struct. Algorithms.

[13]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[14]  Vojtech Rödl,et al.  Short paths in quasi-random triple systems with sparse underlying graphs , 2006, J. Comb. Theory, Ser. B.

[15]  RodlVojtech,et al.  Regular Partitions of Hypergraphs , 2007 .

[16]  V. Rödl,et al.  The counting lemma for regular k-uniform hypergraphs , 2006 .

[17]  W. T. Gowers,et al.  Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[18]  Yoshiyasu Ishigami Linear Ramsey Numbers for Bounded-Degree Hypergrahps , 2007, Electron. Notes Discret. Math..

[19]  Vojtech Rödl,et al.  Regular Partitions of Hypergraphs: Regularity Lemmas , 2007, Combinatorics, Probability and Computing.

[20]  D. Conlon,et al.  Ramsey numbers of sparse hypergraphs , 2009 .

[21]  David Conlon,et al.  Ramsey numbers of sparse hypergraphs , 2007, Random Struct. Algorithms.

[22]  S. Burr ON THE MAGNITUDE OF GENERALIZED RAMSEY NUMBERS FOR GRAPHS , 1973 .

[23]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[24]  Vojtech Rödl,et al.  The Ramsey Number for 3-Uniform Tight Hypergraph Cycles , 2009, Combinatorics, Probability and Computing.

[25]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[26]  V. RÖDL,et al.  THE RAMSEY NUMBER FOR HYPERGRAPH CYCLES II , 2007 .

[27]  Richard H. Schelp,et al.  Graphs with Linearly Bounded Ramsey Numbers , 1993, J. Comb. Theory, Ser. B.

[28]  P. Erdös,et al.  Combinatorial Theorems on Classifications of Subsets of a Given Set , 1952 .

[29]  Vojtech Rödl,et al.  Regular Partitions of Hypergraphs: Counting Lemmas , 2007, Combinatorics, Probability and Computing.

[30]  Daniela Kühn,et al.  3-Uniform hypergraphs of bounded degree have linear Ramsey numbers , 2008, J. Comb. Theory, Ser. B.

[31]  Yoshiharu Kohayakawa,et al.  Hypergraphs, Quasi-randomness, and Conditions for Regularity , 2002, J. Comb. Theory, Ser. A.