Summarising changes in air temperature over Central Europe by quantile regression and clustering

Abstract. The analysis of trends in air temperature observations is one of the most common activities in climate change studies. This work examines the changes in daily mean air temperature over Central Europe using quantile regression, which allows the estimation of trends, not only in the mean but in all parts of the data distribution. A bootstrap procedure is applied for assessing uncertainty on the derived slopes and the resulting distributions are summarised via clustering. The results show considerable spatial diversity over the central European region. A distinct behaviour is found for lower (5%) and upper (95%) quantiles, with higher trends around 0.15 °C decade−1 at the 5% quantile and around 0.20 °C decade−1 at the 95% quantile, the largest trends (>0.2 °C decade−1) occurring in the Alps.

[1]  José Antonio Vilar,et al.  Non-linear time series clustering based on non-parametric forecast densities , 2010, Comput. Stat. Data Anal..

[2]  R. Koenker,et al.  Computing regression quantiles , 1987 .

[3]  Andrés M. Alonso,et al.  Clustering Time Series of Sea Levels: Extreme Value Approach , 2010 .

[4]  E. Hertig,et al.  Temperature extremes in the Mediterranean area: trends in the past and assessments for the future , 2010 .

[5]  R. Koenker Quantile Regression: Name Index , 2005 .

[6]  José M. C. Pereira,et al.  Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal , 2006 .

[7]  M. Scotto,et al.  Model-based clustering of Baltic sea-level , 2009 .

[8]  M. Zappa,et al.  Extreme heat and runoff extremes in the Swiss Alps , 2007 .

[9]  D. Dacunha-Castelle,et al.  Is there a trend in extremely high river temperature for the next decades? A case study for France , 2008 .

[10]  E. J. Klok,et al.  Updated and extended European dataset of daily climate observations , 2009 .

[11]  S. Barbosa Quantile trends in Baltic sea level , 2008 .

[12]  J. R. Berrendero,et al.  Time series clustering based on forecast densities , 2006, Comput. Stat. Data Anal..

[13]  G. Schrier,et al.  Influence of circulation types on temperature extremes in Europe , 2009 .

[14]  Andrés M. Alonso,et al.  Extreme value and cluster analysis of European daily temperature series , 2011 .

[15]  R. Knutti,et al.  Regional climate change patterns identified by cluster analysis , 2010 .

[16]  P. Naveau,et al.  Amplitude and frequency of temperature extremes over the North Atlantic region , 2006 .

[17]  H. Wanner,et al.  Doubled length of western European summer heat waves since 1880 , 2007 .

[18]  R. Koenker,et al.  Quantile spline models for global temperature change , 1994 .

[19]  G. Können,et al.  Homogeneity of 20th century European daily temperature and precipitation series , 2003 .

[20]  S. Parey Extremely high temperatures in France at the end of the century , 2007 .

[21]  J. Patz,et al.  Impact of regional climate change on human health , 2005, Nature.

[22]  Anders Moberg,et al.  Daily dataset of 20th‐century surface air temperature and precipitation series for the European Climate Assessment , 2002 .

[23]  D. Baur,et al.  Modelling the effects of meteorological variables on ozone concentration—a quantile regression approach , 2004 .

[24]  Christoph Schär,et al.  Modelling daily temperature extremes: recent climate and future changes over Europe , 2007 .

[25]  M. Haylock,et al.  Observed coherent changes in climatic extremes during the second half of the twentieth century , 2002 .

[26]  B. Cade,et al.  A gentle introduction to quantile regression for ecologists , 2003 .

[27]  Benjamin Kedem,et al.  Regression Models for Time Series Analysis: Kedem/Time Series Analysis , 2005 .

[28]  J. Elsner,et al.  The increasing intensity of the strongest tropical cyclones , 2008, Nature.

[29]  Hrishikesh D. Vinod,et al.  Maximum Entropy Bootstrap for Time Series: The meboot R Package , 2009 .

[30]  Benjamin Kedem,et al.  Regression models for time series analysis , 2002 .