A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation

Xiang Zhang and colleagues from the University of California, Berkeley, propose a new approach for confining light on scales much smaller than the wavelength of light. Using hybrid waveguides that incorporate dielectric and plasmonic waveguiding techniques, they are able to confine surface plasmon polaritons very strongly over large distances. The advance could lead to truly nanoscale plasmonics and photonics.

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[3]  G. Stewart Optical Waveguide Theory , 1983, Handbook of Laser Technology and Applications.

[4]  T Tamir,et al.  Range extension of surface plasmons by dielectric layers. , 1987, Optics letters.

[5]  Novotny,et al.  Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[7]  J. Jackson Classical Electrodynamics, 3rd Edition , 1998 .

[8]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[9]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[10]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[11]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[12]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[13]  E. Linfield,et al.  Terahertz quantum cascade lasers , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[14]  D. Pile,et al.  Channel plasmon-polariton in a triangular groove on a metal surface. , 2004, Optics letters.

[15]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[16]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[17]  Tetsuro Kobayashi,et al.  Nano-optical waveguides breaking through diffraction limit of light , 2004, SPIE Optics East.

[18]  Yu Huang,et al.  Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires , 2005 .

[19]  D. Pile,et al.  Two-dimensionally localized modes of a nanoscale gap plasmon waveguide , 2005 .

[20]  Integrated Nanoscale Electronics and Optoelectronics: Exploring Nanoscale Science and Technology Through Semiconductor Nanowires , 2005 .

[21]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[22]  Harald Ditlbacher,et al.  Dielectric stripes on gold as surface plasmon waveguides , 2006 .

[23]  Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides. , 2006, Physical review letters.

[24]  P. Nordlander,et al.  Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system , 2006 .

[25]  Nader Engheta,et al.  Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. , 2006, Physical review letters.

[26]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[27]  Xiang Zhang,et al.  Surface Plasmon Amplification in Planar Metal Films , 2007, IEEE Journal of Quantum Electronics.

[28]  Fetah Benabid,et al.  Field enhancement within an optical fibre with a subwavelength air core , 2007 .

[29]  Pierre Berini,et al.  Figures of merit for 2D surface plasmon waveguides and application to metal stripes. , 2007, Optics express.

[30]  Randolph Kirchain,et al.  A roadmap for nanophotonics , 2007 .

[31]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[32]  A. Boudrioua Optical Waveguide Theory , 2010 .