On Intersection Problems for Polynomially Generated Sets

Some classes of sets of vectors of natural numbers are introduced as generalizations of the semi-linear sets, among them the ‘simple semi-polynomial sets.' Motivated by verification problems that involve arithmetical constraints, we show results on the intersection of such generalized sets with semi-linear sets, singling out cases where the non-emptiness of intersection is decidable. Starting from these initial results, we list some problems on solvability of arithmetical constraints beyond the semi-linear ones