Role of pulses in ultra wideband systems

UWB pulses are the unique labels of UWB systems. This paper investigates the role of pulse systematically and highlights the central position of the pulse in UWB systems. Four system properties related closely to the pulse are discussed: propagation properties, capacity, interference to existing systems and performance of correlation receivers. The properties of pulses which function directly on every aspect are highlighted. Novel viewpoint is provided for the evaluation of capacity and interference. Suggestions are given on the pulse design, with emphasis on the whole system performance.

[1]  Moe Z. Win,et al.  A unified spectral analysis of generalized time-hopping spread-spectrum signals in the presence of timing jitter , 2002, IEEE J. Sel. Areas Commun..

[2]  J. Keith Townsend,et al.  The effects of timing jitter and tracking on the performance of impulse radio , 2002, IEEE J. Sel. Areas Commun..

[3]  Liuqing Yang,et al.  Designing optimal pulse-shapers for ultra-wideband radios , 2003, Journal of Communications and Networks.

[4]  Moe Z. Win,et al.  Effects of spreading bandwidth on the performance of UWB RAKE receivers , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[5]  Rodney A. Kennedy,et al.  Performance of ultra-wideband correlator receiver using Gaussian monocycles , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[6]  Zhi Ding,et al.  A novel ultra-wideband pulse design algorithm , 2003, IEEE Communications Letters.

[7]  Moe Z. Win,et al.  Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications , 2000, IEEE Trans. Commun..

[8]  R. Knopp ON THE ACHIEVABLE RATES OF UWB SYSTEMS , 2003 .

[9]  Muriel Médard,et al.  Bandwidth scaling for fading multipath channels , 2002, IEEE Trans. Inf. Theory.

[10]  William A. Kissick The Temporal and Spectral Characteristics of Ultrawideband Signals , 2001 .

[11]  Rodney A. Kennedy,et al.  New results on the capacity of M-ary PPM ultra-wideband systems , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[12]  Henning F. Harmuth,et al.  Transmission of information by orthogonal functions , 1969 .

[13]  Georgios B. Giannakis,et al.  Optimal waveform design for UWB radios , 2004, IEEE Transactions on Signal Processing.

[14]  J. R. Hoffman,et al.  Addendum to NTIA Report 01-384: Measurements to Determine Potential Interference to GPS Receivers from Ultrawideband Transmission Systems , 2001 .

[15]  Li Zhao,et al.  Capacity of M-ary PPM ultra-wideband communications over AWGN channels , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[16]  Rodney A. Kennedy,et al.  Cramér-Rao Lower Bounds for the Synchronization of UWB Signals , 2005, EURASIP J. Adv. Signal Process..

[17]  Terence W. Barrett,et al.  History of UltraWideBand (UWB) Radar & Communications: Pioneers and Innovators , 2000 .

[18]  Emre Telatar,et al.  Capacity and mutual information of wideband multipath fading channels , 1998, IEEE Trans. Inf. Theory.

[19]  Sergio Benedetto,et al.  Performance evaluation of TH-PPM UWB systems in the presence of multiuser interference , 2003, IEEE Communications Letters.

[20]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[21]  J. Foerster,et al.  Channel modeling sub-committee report final , 2002 .

[22]  Bo Hu,et al.  Exact bit error rate analysis of TH-PPM UWB systems in the presence of multiple-access interference , 2003, IEEE Communications Letters.

[23]  Georgios B. Giannakis,et al.  Optimal waveform design for UWB radios , 2006, IEEE Trans. Signal Process..

[24]  Xiaomin Chen,et al.  Monocycle shapes for ultra wideband system , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).