Fundamental properties of core-collapse Supernova and GRB progenitors: predicting the look of massive stars before death

We investigate the fundamental properties of core-collapse Supernova (SN) progenitors from single stars at solar meta llicity. For this purpose, we combine Geneva stellar evolutionary models with initial masses of Mini = 20− 120 M⊙ with atmospheric/wind models using the radiative transfer code CMFGEN. We provide synthetic photometry and high-resolution spectra of hot stars at t he pre-SN stage. For models with Mini = 9− 20 M⊙, we supplement our analysis using publicly available MARCS model atmospheres of RSGs to estimate their synthetic photometry. We employ well-established observational criteria of spectroscopic classifi cation and find that massive stars, depending on their initial mass and rotation , end their lives as red supergiants (RSG), yellow hypergian ts (YHG), luminous blue variables (LBV), and Wolf-Rayet (WR) stars of the WN and WO spectral types. For rotating models, we obtained the following types of SN progenitors: WO1‐3 (Mini ≥ 32 M⊙), WN10‐11 (25 40 M⊙), WN7‐8 (25< Mini ≤ 40 M⊙), WN11h/LBV (20< Mini ≤ 25 M⊙), and RSGs (9≤ Mini ≤ 20 M⊙). Our rotating models indicate that SN IIP progenitors are all RSG, SN IIL/b progenitors are 56% LBVs and 44% YHGs, SN Ib progenitors are 96% WN10-11 and 4% WOs, and SN Ic progenitors are all WO stars. We find that n ot necessarily the most massive and luminous SN progenitors are the brighter ones in a given filter, since this depends on t heir luminosity, temperature, wind density, and how the spectral energy distribution compares to a filter bandpass. We find that SN IIP progenitors (RSGs) are bright in the RI JHKS filters and faint in the U B filters. SN IIL /b progenitors (LBVs and YHGs), and SN Ib progenitors (WNs) are relatively bright in optical/infrared filters, while SN Ic progenitors (WOs) are faint in all optical filters. We argu e that SN Ib and Ic progenitors from single stars should be undetectable in the available pre-explosion images with the current magnitude limits, in agreement with observational results.

[1]  G. Meynet,et al.  Massive star evolution: luminous blue variables as unexpected supernova progenitors , 2013, 1301.1519.

[2]  J. Groh,et al.  ON THE NATURE OF THE PROTOTYPE LUMINOUS BLUE VARIABLE AG CARINAE. II. WITNESSING A MASSIVE STAR EVOLVING CLOSE TO THE EDDINGTON AND BISTABILITY LIMITS , 2011, 1105.0814.

[3]  M. Egan,et al.  An Infrared Ring Nebula around MSX5C G358.5391+00.1305: The True Nature of Suspected Planetary Nebula Wray 17-96 Determined via Direct Imaging and Spectroscopy , 2002 .

[4]  M. Barlow,et al.  Quantitative classification of WC and WO stars , 1998 .

[5]  S. Owocki,et al.  Stellar envelope inflation near the Eddington limit - Implications for the radii of Wolf-Rayet stars and luminous blue variables , 2011, 1112.1910.

[6]  M. Cantiello,et al.  Pair creation supernovae at low and high redshift , 2007 .

[7]  P. Crowther Stellar Winds from Massive Stars , 2000, astro-ph/0010581.

[8]  P. Massey,et al.  Grids of stellar models with rotation - II. WR populations and supernovae/GRB progenitors at Z = 0.014 , 2012, 1203.5243.

[9]  Henny J. G. L. M. Lamers,et al.  Terminal Velocities and the Bistability of Stellar Winds , 1995 .

[10]  G. Weigelt,et al.  Resolving the asymmetric inner wind region of the yellow hypergiant IRC +10420 with VLTI/AMBER in low and high spectral resolution mode , 2009, 0909.4688.

[11]  Anthony F. J. Moffat,et al.  A three-dimensional classification for WN stars , 1996 .

[12]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[13]  N. Mowlavi,et al.  Grids of stellar models with rotation - I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014) , 2011, 1110.5049.

[14]  D. Vanbeveren,et al.  Blue supergiant progenitor models of type II supernovae , 2012, 1212.4285.

[15]  A. Sander,et al.  The Galactic WC stars Stellar parameters from spectral analyses indicate a new evolutionary sequence , 2012, 1201.6354.

[16]  A. Filippenko,et al.  On the Progenitor of Supernova 2001du in NGC 1365 , 2003, astro-ph/0301346.

[17]  Kris Davidson,et al.  On the Nature of the Central Source in η Carinae , 2001 .

[18]  R. Kudritzki,et al.  METALLICITY IN THE GALACTIC CENTER: THE QUINTUPLET CLUSTER , 2008, 0809.3185.

[19]  R. Kotak,et al.  THE YELLOW SUPERGIANT PROGENITOR OF THE TYPE II SUPERNOVA 2011dh IN M51 , 2011, 1106.2565.

[20]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[21]  Hubble Space Telescope imaging of the progenitor sites of six nearby core‐collapse supernovae , 2005, astro-ph/0501323.

[22]  J. Ma'iz-Apell'aniz,et al.  CHORIZOS: A χ2 Code for Parameterized Modeling and Characterization of Photometry and Spectrophotometry , 2004, astro-ph/0408361.

[23]  J. Maíz Apellániz Accepted for publication in the Astronomical Journal A recalibration of optical photometry: , 2005 .

[24]  W. Hamann,et al.  Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas , 2008, 0807.2476.

[25]  W. Hamann,et al.  Mass loss from late-type WN stars and its Z-dependence: very massive stars approaching the Eddington limit , 2008, 0803.0866.

[26]  Jessica R. Lu,et al.  DISCOVERY OF PRECURSOR LUMINOUS BLUE VARIABLE OUTBURSTS IN TWO RECENT OPTICAL TRANSIENTS: THE FITFULLY VARIABLE MISSING LINKS UGC 2773-OT AND SN 2009ip , 2009, 0909.4792.

[27]  W. Marcolino,et al.  Spectral Analysis of the Pre-WN Candidate HD 326823 , 2007 .

[28]  Center for Cosmology,et al.  ON ABSORPTION BY CIRCUMSTELLAR DUST, WITH THE PROGENITOR OF SN 2012aw AS A CASE STUDY , 2012, 1208.4111.

[29]  A. Pastorello,et al.  A deeper search for the progenitor of the Type Ic Supernova 2002ap , 2007, 0706.0500.

[30]  J. M. Apellániz A uniform set of optical/NIR photometric zero points to be used with CHORIZOS , 2006, astro-ph/0609430.

[31]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[32]  P. Whitelock,et al.  ON THE NATURE OF THE PROTOTYPE LUMINOUS BLUE VARIABLE AG CARINAE. I. FUNDAMENTAL PARAMETERS DURING VISUAL MINIMUM PHASES AND CHANGES IN THE BOLOMETRIC LUMINOSITY DURING THE S-Dor CYCLE , 2009, 0904.2363.

[33]  R. Humphreys,et al.  The initial mass function for massive stars in the Galaxy and the Magellanic Clouds , 1984 .

[34]  M. Cantiello,et al.  EVOLUTION OF MASSIVE STARS WITH PULSATION-DRIVEN SUPERWINDS DURING THE RED SUPERGIANT PHASE , 2010, 1005.4925.

[35]  Georges Meynet,et al.  Rotating massive stars: From first stars to gamma ray bursts , 2012 .

[36]  S. Smartt,et al.  The progenitor of SN 2005cs in the Whirlpool Galaxy , 2005, astro-ph/0507502.

[37]  C. Jager The yellow hypergiants , 1998 .

[38]  Cecile Loup,et al.  An Empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich asymptotic giant branch stars , 2005 .

[39]  M. Garcia,et al.  On the nature of candidate luminous blue variables in M 33 , 2012, 1202.4409.

[40]  H Germany,et al.  On the influence of the companion star in Eta Carinae: 2D radiative transfer modeling of the ultraviolet and optical spectra , 2012, 1204.1963.

[41]  Nolan R. Walborn,et al.  The OB Zoo: A Digital Atlas of Peculiar Spectra , 2000 .

[42]  Adam A. Miller,et al.  A MASSIVE PROGENITOR OF THE LUMINOUS TYPE IIn SUPERNOVA 2010jl , 2010, 1011.4150.

[43]  Kelsey I. Clubb,et al.  The Unprecedented Third Outburst of SN 2009ip: A Luminous Blue Variable Becomes a Supernova , 2012, 1209.6320.

[44]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[45]  Luminosity and mass limits for the progenitor of the type Ic supernova 2004gt in NGC 4038 , 2005, astro-ph/0506436.

[46]  M. Livio,et al.  Identification of the Red Supergiant Progenitor of Supernova 2005cs: Do the Progenitors of Type II-P Supernovae Have Low Mass? , 2005, astro-ph/0507394.

[47]  Kris Davidson,et al.  THE LUMINOUS BLUE VARIABLES: ASTROPHYSICAL GEYSERS , 1994 .

[48]  I. Negueruela,et al.  Spectroscopic monitoring of the luminous blue variable Westerlund1-243 from 2002 to 2009 , 2009, 0910.0529.

[49]  Wm. A. Wheaton,et al.  Spectral Irradiance Calibration in the Infrared. XIV. The Absolute Calibration of 2MASS , 2003, astro-ph/0304350.

[50]  Ice,et al.  THE MASSIVE PROGENITOR OF THE POSSIBLE TYPE II-LINEAR SUPERNOVA 2009hd IN MESSIER 66 , 2011, 1108.2645.

[51]  J. Vink,et al.  The Missing Luminous Blue Variables and the Bistability Jump , 2004, astro-ph/0407202.

[52]  R. Izzard,et al.  On the nature and detectability of Type Ib/c supernova progenitors , 2012, 1207.3683.

[53]  Switzerland,et al.  Stellar evolution with rotation - XIII. Predicted GRB rates at various Z , 2005, astro-ph/0507343.

[54]  D. Hillier Modeling the extended atmospheres of WN stars , 1987 .

[55]  J. Eldridge,et al.  Circumstellar dust as a solution to the red supergiant supernova progenitor problem , 2011, 1109.4637.

[56]  London,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[57]  Luminous blue variables as the progenitors of supernovae with quasi-periodic radio modulations , 2006, astro-ph/0610095.

[58]  High-Resolution Spectroscopy of the Yellow Hypergiant ρ Cassiopeiae from 1993 through the Outburst of 2000-2001 , 2003, astro-ph/0301238.

[59]  A. Pastorello,et al.  A giant outburst two years before the core-collapse of a massive star , 2007, Nature.

[60]  L. Kewley,et al.  THE HOST GALAXIES OF GAMMA-RAY BURSTS. II. A MASS–METALLICITY RELATION FOR LONG-DURATION GAMMA-RAY BURST HOST GALAXIES , 2010, 1006.3560.

[61]  S. B. Cenko,et al.  THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES , 2010, 1011.4959.

[62]  M. L. Pumo,et al.  INTERACTING SUPERNOVAE AND SUPERNOVA IMPOSTORS: SN 2009ip, IS THIS THE END? , 2012, 1210.3568.

[63]  I. Paris,et al.  Relative frequencies of supernovae types: dependence on host galaxy magnitude, galactocentric radius, and local metallicity , 2009, 0905.3986.

[64]  Z. Cano A new method for estimating the bolometric properties of Ibc supernovae , 2013, 1306.1488.

[65]  A. M. Genderen S Doradus variables in the Galaxy and the Magellanic Clouds , 2001 .

[66]  R. Kudritzki,et al.  THE TEMPERATURES OF RED SUPERGIANTS , 2013, 1302.2674.

[67]  Jorick S. VinkAlex de Koter Predictions of variable mass loss for Luminous Blue Variables , 2002, astro-ph/0207170.

[68]  E. Berger,et al.  THE DIVERSITY OF MASSIVE STAR OUTBURSTS. I. OBSERVATIONS OF SN2009ip, UGC 2773 OT2009-1, AND THEIR PROGENITORS , 2010, 1002.0635.

[69]  C. Leitherer,et al.  Geometry and physical conditions in the stellar wind of AG Carinae , 1994 .

[70]  G. Meynet,et al.  Stellar evolution with rotation X. Wolf-Rayet star populations at solar metallicity , 2022 .

[71]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[72]  G. Meynet,et al.  Episodic modulations in supernova radio light curves from luminous blue variable supernova progenitor models , 2013, 1306.0605.

[73]  C. Georgy Yellow supergiants as supernova progenitors: an indication of strong mass loss for red supergiants? , 2011, 1111.7003.

[74]  A. Gal-yam,et al.  A massive hypergiant star as the progenitor of the supernova SN 2005gl , 2009, Nature.

[75]  S. Dougherty,et al.  Radio emission from the massive stars in the galactic super star cluster Westerlund 1 , 2009, 0912.4165.

[76]  P. Podsiadlowski,et al.  Presupernova Evolution in Massive Interacting Binaries , 1992 .

[77]  P. Morris,et al.  Non-isotropic outflows in the infrared: ISO imaging of LBVs , 1999 .

[78]  Pierre Bergeron,et al.  Calibration of Synthetic Photometry Using DA White Dwarfs , 2005 .

[79]  V. Larionov,et al.  On the population of galactic Luminous Blue Variables , 2005 .

[80]  R. Kudritzki,et al.  WINDS FROM HOT STARS , 2000 .

[81]  S. D. Mink,et al.  THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS , 2012, 1211.3742.

[82]  K. Maguire,et al.  SN 2009md: another faint supernova from a low-mass progenitor , 2010, 1011.6558.

[83]  S. Smartt,et al.  ON THE PROGENITOR AND EARLY EVOLUTION OF THE TYPE II SUPERNOVA 2009kr , 2009, 0912.2071.

[84]  Ryan Chornock,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[85]  N. Langer,et al.  Presupernova Evolution of Massive Single and Binary Stars , 2012, 1206.5443.

[86]  M. Barlow,et al.  Discovery of a WO star in the Scutum—Crux arm of the inner Galaxy , 2004, astro-ph/0403482.

[87]  M. Barlow,et al.  Silicate and hydrocarbon emission from Galactic M supergiants , 1998 .

[88]  R. Kotak,et al.  RED AND DEAD: THE PROGENITOR OF SN 2012aw IN M95 , 2012, 1204.1523.

[89]  D. Poznanski,et al.  THE RED SUPERGIANT PROGENITOR OF SUPERNOVA 2012aw (PTF12bvh) IN MESSIER 95 , 2012, 1207.2811.

[90]  R. Foley,et al.  On the Progenitors of Two Type IIP Supernovae in the Virgo Cluster 1 , 2009 .

[91]  S. E. Woosley,et al.  How Massive Single Stars End Their Life , 2003 .

[92]  Rolf Walder,et al.  The different progenitors of type Ib, Ic SNe, and of GRB , 2009, 0906.2284.

[93]  W.-R. Hamann,et al.  The Galactic WN stars. Spectral analyses with line-blanketed model atmospheres versus stellar evolut , 2006 .

[94]  J. Vink,et al.  The bi-stability jump as the origin for multiple P-Cygni absorption components in luminous blue variables , 2011, 1106.3007.

[95]  D. John Hillier,et al.  The Treatment of Non-LTE Line Blanketing in Spherically Expanding Outflows , 1998 .

[96]  I. Howarth,et al.  On the nature of the galactic early-B hypergiants , 2012, 1202.3991.

[97]  Ryan Chornock,et al.  Observed Fractions of Core-Collapse Supernova Types and Initial Masses of their Single and Binary Progenitor Stars , 2010, 1006.3899.

[98]  O. Stahl,et al.  Variable and Non-spherical Stellar Winds in Luminous Hot Stars , 1999 .

[99]  S. Smartt,et al.  Mass limits for the progenitor star of supernova 2001du and other Type II-P supernovae , 2003, astro-ph/0301324.

[100]  Georges Meynet,et al.  THE EVOLUTION OF ROTATING STARS , 2000 .

[101]  Philip Massey,et al.  The effective temperature scale of galactic red supergiants : Cool, but not as cool as we thought , 2005 .

[102]  ON THE PROGENITOR OF THE TYPE II-PLATEAU SN 2008cn in NGC 4603 ∗ , 2009 .

[103]  R. Barba,et al.  BONA FIDE, STRONG-VARIABLE GALACTIC LUMINOUS BLUE VARIABLE STARS ARE FAST ROTATORS: DETECTION OF A HIGH ROTATIONAL VELOCITY IN HR CARINAE , 2009, 0909.4459.

[104]  Christopher A. Tout,et al.  The Effect of Massive Binaries on Stellar Populations and Supernova Progenitors , 2007, Proceedings of the International Astronomical Union.

[105]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[106]  W. Schmutz,et al.  Long-term spectroscopic monitoring of the Luminous Blue Variable AG Carinae , 2001 .

[107]  S. Smartt,et al.  Ruling out a massive asymptotic giant-branch star as the progenitor of supernova 2005cs , 2007, astro-ph/0701152.

[108]  Edwin A. Valentijn,et al.  The Future of Photometric, Spectrophotometric and Polarimetric Standardization , 2007 .

[109]  G. Meynet,et al.  The past and future evolution of a star like Betelgeuse , 2013, 1303.1339.

[110]  S. Woosley,et al.  Core-collapse explosions of Wolf–Rayet stars and the connection to Type IIb/Ib/Ic supernovae , 2011, 1102.5160.

[111]  I. Steele,et al.  Bolometric luminosity variations in the luminous blue variable AFGL2298 , 2009, 0909.4160.

[112]  J. MacKenty,et al.  The P Cygni supergiant [OMN2000] LS1 – implications for the star formation history of W51 , 2009, 0909.3934.