Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors

[1]  Shiguo Zhang,et al.  Nanoconfined Ionic Liquids. , 2017, Chemical reviews.

[2]  D. Aurbach,et al.  In Situ Porous Structure Characterization of Electrodes for Energy Storage and Conversion by EQCM-D: a Review , 2017 .

[3]  Alexander C. Forse,et al.  Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy , 2017, Nature Energy.

[4]  Shiguo Zhang,et al.  Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. , 2017, Chemical reviews.

[5]  S. Bhatia,et al.  Optimal Electrode Mass Ratio in Nanoporous Carbon Electrochemical Supercapacitors , 2016 .

[6]  V. Presser,et al.  Increase in Capacitance by Subnanometer Pores in Carbon , 2016 .

[7]  Bruce Dunn,et al.  Efficient storage mechanisms for building better supercapacitors , 2016, Nature Energy.

[8]  Yury Gogotsi,et al.  Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures , 2016 .

[9]  John M. Griffin,et al.  New Perspectives on the Charging Mechanisms of Supercapacitors , 2016, Journal of the American Chemical Society.

[10]  D. Aurbach,et al.  Novel in situ multiharmonic EQCM-D approach to characterize complex carbon pore architectures for capacitive deionization of brackish water , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  A. Kornyshev,et al.  Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors? , 2016, Nanoscale horizons.

[12]  Wenbin Hu,et al.  A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors , 2015 .

[13]  R. Atkin,et al.  Structure and Nanostructure in Ionic Liquids , 2015 .

[14]  Pierre-Louis Taberna,et al.  In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. , 2015, Nature materials.

[15]  D. Bedrov,et al.  Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes. , 2015, ACS nano.

[16]  Zhibin Yang,et al.  Recent advancement of nanostructured carbon for energy applications. , 2015, Chemical reviews.

[17]  Alexander C. Forse,et al.  NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors , 2015, Journal of the American Chemical Society.

[18]  Y. Gogotsi,et al.  Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. , 2015, Angewandte Chemie.

[19]  Xingbin Yan,et al.  Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions. , 2014, ChemSusChem.

[20]  Pierre-Louis Taberna,et al.  Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. , 2014, Journal of the American Chemical Society.

[21]  V. Presser,et al.  Carbons and Electrolytes for Advanced Supercapacitors , 2014, Advanced materials.

[22]  A. Kornyshev,et al.  Ionic liquids at electrified interfaces. , 2014, Chemical reviews.

[23]  Q. Wang,et al.  Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities , 2014 .

[24]  Naoki Nitta,et al.  In situ small angle neutron scattering revealing ion sorption in microporous carbon electrical double layer capacitors. , 2014, ACS nano.

[25]  Yalin Lu,et al.  Capacitance of carbon-based electrical double-layer capacitors , 2014, Nature Communications.

[26]  Zhengyuan Tu,et al.  Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. , 2014, Angewandte Chemie.

[27]  A. Kornyshev,et al.  Accelerating charging dynamics in subnanometre pores. , 2013, Nature materials.

[28]  P. Simon,et al.  Energy applications of ionic liquids , 2014 .

[29]  P. Fulvio,et al.  Densification of Ionic Liquid Molecules within a Hierarchical Nanoporous Carbon Structure Revealed by Small-Angle Scattering and Molecular Dynamics Simulation , 2014 .

[30]  Alexander C. Forse,et al.  In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism , 2013, Journal of the American Chemical Society.

[31]  B Rotenberg,et al.  Highly confined ions store charge more efficiently in supercapacitors , 2013, Nature Communications.

[32]  Y. Gogotsi,et al.  Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. , 2013, Journal of the American Chemical Society.

[33]  C. Grey,et al.  In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. , 2013, Accounts of chemical research.

[34]  D. Aurbach,et al.  In Situ Electrochemical Quartz Crystal Admittance Methodology for Tracking Compositional and Mechanical Changes in Porous Carbon Electrodes , 2013 .

[35]  A. Kornyshev,et al.  Charging Dynamics and Optimization of Nanoporous Supercapacitors , 2013 .

[36]  G. Yushin,et al.  Small-angle neutron scattering for in situ probing of ion adsorption inside micropores. , 2013, Angewandte Chemie.

[37]  Michaël Deschamps,et al.  Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. , 2013, Nature materials.

[38]  Y. Elabd,et al.  In Situ Molecular Level Measurements of Ion Dynamics in an Electrochemical Capacitor , 2012 .

[39]  J. Monk,et al.  Structure and Dynamics of an Ionic Liquid Confined Inside a Charged Slit Graphitic Nanopore , 2012 .

[40]  P. Taberna,et al.  On the molecular origin of supercapacitance in nanoporous carbon electrodes. , 2012, Nature materials.

[41]  Lynden A. Archer,et al.  Ionic liquid-nanoparticle hybrid electrolytes , 2012 .

[42]  C. Grey,et al.  Real-time NMR studies of electrochemical double-layer capacitors. , 2011, Journal of the American Chemical Society.

[43]  B. Sumpter,et al.  Complex capacitance scaling in ionic liquids-filled nanopores. , 2011, ACS nano.

[44]  D. Aurbach,et al.  The effect of specific adsorption of cations and their size on the charge-compensation mechanism in carbon micropores: the role of anion desorption. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[45]  Doron Aurbach,et al.  EQCM as a unique tool for determination of ionic fluxes in microporous carbons as a function of surface charge distribution , 2010 .

[46]  D. Aurbach,et al.  Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons. , 2010, Journal of the American Chemical Society.

[47]  D. Aurbach,et al.  Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. , 2009, Nature materials.

[48]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[49]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[50]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[51]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[52]  D. Adam Clean and green. . .but are they mean? , 2000, Nature.

[53]  Robert C. Wolpert,et al.  A Review of the , 1985 .