Partially Complemented Representations of Digraphs

A complementation operation on a vertex of a digraph changes all outgoing arcs into non-arcs, and outgoing non-arcs into arcs. This defines an equivalence relation where two digraphs are equivalent if one can be obtained from the other by a sequence of such operations. We show that given an adjacency-list representation of a digraph G, many fundamental graph algorithms can be carried out on any member G' of G's equivalence class in O(n+m) time, where m is the number of arcs in G, not the number of arcs in G' . This may have advantages when G' is much larger than G. We use this to generalize to digraphs a simple O(n + m log n) algorithm of McConnell and Spinrad for finding the modular decomposition of undirected graphs. A key step is finding the strongly-connected components of a digraph F in G's equivalence class, where F may have ~(m log n) arcs.

[1]  Jeremy P. Spinrad,et al.  Incremental modular decomposition , 1989, JACM.

[2]  Michel Habib,et al.  A New Linear Algorithm for Modular Decomposition , 1994, CAAP.

[3]  Jens Gustedt,et al.  Efficient and Practical Algorithms for Sequential Modular Decomposition , 2001, J. Algorithms.

[4]  Andrzej Ehrenfeucht,et al.  Theory of 2-Structures, Part II: Representation Through Labeled Tree Families , 1990, Theor. Comput. Sci..

[5]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[6]  Jens Gustedt,et al.  Efficient and practical modular decomposition , 1997, SODA '97.

[7]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[8]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[9]  Jeremy P. Spinrad,et al.  Ordered Vertex Partitioning , 2000, Discret. Math. Theor. Comput. Sci..

[10]  Sophie Tison,et al.  Trees in algebra and programming, CAAP'94 : 19th International Colloquium, Edinburgh, U.K., April 11-13, 1994 : proceedings , 1994 .

[11]  P. Gács,et al.  Algorithms , 1992 .

[12]  Andrzej Ehrenfeucht,et al.  Angular 2-Structures , 1992, Theor. Comput. Sci..

[13]  Andrzej Ehrenfeucht,et al.  Dynamic labeled 2-structures , 1994, Mathematical Structures in Computer Science.

[14]  Andrzej Ehrenfeucht,et al.  An O(n²) Divide-and-Conquer Algorithm for the Prime Tree Decomposition of Two-Structures and Modular Decomposition of Graphs , 1994, J. Algorithms.

[15]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[16]  Jeremy P. Spinrad,et al.  Linear-time modular decomposition and efficient transitive orientation of comparability graphs , 1994, SODA '94.

[17]  Ross M. McConnell Complement-Equivalence Classes on Graphs , 1997, Structures in Logic and Computer Science.

[18]  Jeremy P. Spinrad,et al.  P4-Trees and Substitution Decomposition , 1992, Discret. Appl. Math..

[19]  Andrzej Ehrenfeucht,et al.  Theory of 2-Structures, Part I: Clans, Basic Subclasses, and Morphisms , 1990, Theor. Comput. Sci..

[20]  R. Möhring Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions , 1985 .