Asymptotic Justification of the Kirchhoff–Love Assumptions for a Linearly Elastic Clamped Shell
暂无分享,去创建一个
[1] Cristinel Mardare,et al. Two-Dimensional Models of Linearly Elastic Shells: Error Estimates between Their Solutions , 1998 .
[2] Philippe Destuynder,et al. A classification of thin shell theories , 1985 .
[3] Analyse asymptotique et modeles bi-dimensionnels des coques lineairement rigides , 1997 .
[4] E. Sanchez-Palencia,et al. Statique et dynamique des coques minces. II: Cas de flexion pure inhibée. Approximation membranaire , 1989 .
[5] G. Kirchhoff. Vorlesungen über mathematische physik , 1877 .
[6] Cristinel Mardare,et al. Asymptotic analysis of linearly elastic shells: error estimates in the membrane case , 1998 .
[7] K. Genevey,et al. A regularity result for a linear membrane shell problem , 1996 .
[8] Philippe G. Ciarlet,et al. An existence and uniqueness theorem for the two-dimensional linear membrane shell equations , 1996 .
[9] B. Miara,et al. Asymptotic analysis of linearly elastic shells , 1996 .
[10] Philippe G. Ciarlet,et al. Asymptotic analysis of linearly elastic shells: ‘Generalized membrane shells’ , 1996 .
[11] Philippe G. Ciarlet,et al. On the ellipticity of linear membrane shell equations , 1996 .
[12] D. Caillerie,et al. ELASTIC THIN SHELLS: ASYMPTOTIC THEORY IN THE ANISOTROPIC AND HETEROGENEOUS CASES , 1995 .
[13] A. L. Goldenveizer. The principles of reducing three-dimensional problems of elasticity to two-dimensional problems of the theory of plates and shells , 1966 .
[14] Philippe G. Ciarlet,et al. Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations , 1996 .
[15] Ph. Destuynder,et al. Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité , 1981 .
[16] G. Kirchhoff,et al. Vorlesungen über mathematische Physik : Mechanik , 1969 .
[17] Philippe G. Ciarlet,et al. Introduction to Linear Shell Theory , 1989 .
[18] The Space of Inextensional Displacements for a Partially Clamped Linearly Elastic Shell with an Elliptic Middle Surface , 1998 .
[19] A. L. Gol'denveizer. Derivation of an approximate theory of shells by means of asymptotic integration of the equations of the theory of elasticity , 1963 .
[20] E. Sanchez-Palencia,et al. Passage à la limite de l'élasticité tridimensionnelle à la théorie asymptotique des coques minces , 1990 .
[21] A. Love. A treatise on the mathematical theory of elasticity , 1892 .
[22] D. Caillerie,et al. A NEW KIND OF SINGULAR STIFF PROBLEMS AND APPLICATION TO THIN ELASTIC SHELLS , 1995 .
[23] P. G. Ciarlet,et al. A justification of the Marguerre-von Kármán equations , 1986 .
[24] S. Agmon,et al. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .
[25] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[26] Monique Dauge,et al. Asymptotics of arbitrary order for a thin elastic clamped plate , 1996 .