Asymptotic Justification of the Kirchhoff–Love Assumptions for a Linearly Elastic Clamped Shell

The displacement vector of a linearly elastic shell can be computed by using the two-dimensional Koiter's model, based on the a priori Kirchhoff–Love assumptions. These hypotheses imply that the displacement of any point of the shell is an affine function of the transverse variable x3. The term independent of x3 of this approximation is equal to the displacement vector of the two-dimensional Koiter's model. The term linear in x3 depends on the infinitesimal rotation vector of the normal. After an appropriate scaling, we estimate here the difference between the three-dimensional displacement and this affine vector field in the case of shells clamped along their entire lateral face. Besides, in the case of shells with uniformly elliptic middle surface, taking into account the term depending of the rotation of the normal allows to improve the asymptotic estimate between the three-dimensionnal displacement and Koiter's bidimensional displacement.

[1]  Cristinel Mardare,et al.  Two-Dimensional Models of Linearly Elastic Shells: Error Estimates between Their Solutions , 1998 .

[2]  Philippe Destuynder,et al.  A classification of thin shell theories , 1985 .

[3]  Analyse asymptotique et modeles bi-dimensionnels des coques lineairement rigides , 1997 .

[4]  E. Sanchez-Palencia,et al.  Statique et dynamique des coques minces. II: Cas de flexion pure inhibée. Approximation membranaire , 1989 .

[5]  G. Kirchhoff Vorlesungen über mathematische physik , 1877 .

[6]  Cristinel Mardare,et al.  Asymptotic analysis of linearly elastic shells: error estimates in the membrane case , 1998 .

[7]  K. Genevey,et al.  A regularity result for a linear membrane shell problem , 1996 .

[8]  Philippe G. Ciarlet,et al.  An existence and uniqueness theorem for the two-dimensional linear membrane shell equations , 1996 .

[9]  B. Miara,et al.  Asymptotic analysis of linearly elastic shells , 1996 .

[10]  Philippe G. Ciarlet,et al.  Asymptotic analysis of linearly elastic shells: ‘Generalized membrane shells’ , 1996 .

[11]  Philippe G. Ciarlet,et al.  On the ellipticity of linear membrane shell equations , 1996 .

[12]  D. Caillerie,et al.  ELASTIC THIN SHELLS: ASYMPTOTIC THEORY IN THE ANISOTROPIC AND HETEROGENEOUS CASES , 1995 .

[13]  A. L. Goldenveizer The principles of reducing three-dimensional problems of elasticity to two-dimensional problems of the theory of plates and shells , 1966 .

[14]  Philippe G. Ciarlet,et al.  Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations , 1996 .

[15]  Ph. Destuynder,et al.  Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité , 1981 .

[16]  G. Kirchhoff,et al.  Vorlesungen über mathematische Physik : Mechanik , 1969 .

[17]  Philippe G. Ciarlet,et al.  Introduction to Linear Shell Theory , 1989 .

[18]  The Space of Inextensional Displacements for a Partially Clamped Linearly Elastic Shell with an Elliptic Middle Surface , 1998 .

[19]  A. L. Gol'denveizer Derivation of an approximate theory of shells by means of asymptotic integration of the equations of the theory of elasticity , 1963 .

[20]  E. Sanchez-Palencia,et al.  Passage à la limite de l'élasticité tridimensionnelle à la théorie asymptotique des coques minces , 1990 .

[21]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[22]  D. Caillerie,et al.  A NEW KIND OF SINGULAR STIFF PROBLEMS AND APPLICATION TO THIN ELASTIC SHELLS , 1995 .

[23]  P. G. Ciarlet,et al.  A justification of the Marguerre-von Kármán equations , 1986 .

[24]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[25]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[26]  Monique Dauge,et al.  Asymptotics of arbitrary order for a thin elastic clamped plate , 1996 .